D/(5^3+5^2-5):5
E(8^2002+8^2001-8^2000):8^2000
Tính: \(D=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003\)
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + ... + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ............. - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ............ + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + .............. + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
1+2-3-4+5+6-7-8+9+10-...+1998-1999-2000+2001+2002
tính : A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)
A=0+0....+0
A=0
Ta thấy 2-3-4=-5
6-7-8=-9
.............
1998-1999-2000=-2001
=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003
=> A= 1+2002-2003=0
Vậy A=0
\(=\left(1+2-3\right)+\left(-4+5+6-7\right)+...+\left(-2000+2001+2002-2003\right)\)
\(=0+0+0+...+0\)
\(=0\)
học tốt
Tính nhanh
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
`S = 1+2-3-5+5+6-7-8+9+10-...+1998-1999-2000+2001+2002`
có :
`(2002 - 1) :1 +1 = 2002` ( số hạng)
`2002 : 4 = 500 (dư 2)`
`=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002`
`=(-4)+(-4)+...+(-4) +2001 +2002` có `500` só `-4`
`=500 .(-4) + 2001+ 2002`
`= (-2000)+2001+2002`
`=1+2002`
`=2003`
1) So sánh :
A = 2000/2001 + 2001/2002 và B = 2000+2001/2001+2002
2) Tìm cặp x,y thuộc Z, biết :
5/x + y/4 = 1/8
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
Ta có: B =20002001+2002 +20012001+2002
Mặt khác: 20002001 >20002001+2002
20012002 >20012001+2002
Suy ra 20002001 +20012002 >20002001+2002 +20012001+2002
hay A> B
Vậy A > B.
Mọi người giúp mk nha
A=1+(-2)+3+(-4)+...+2019+(-2020)
B=1+(-3)+5+(-7)+...+2001+(-2003)
C=2-4+6-8+...+1998-2000
D=1-2-3+4+5+6-7-8+9+...+2002-2003-2004+2005+2006
E=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
a)1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
b)1.2.3...9-1.2.3....8-1.2.3....7.82
Làm hộ em với ạ
A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
Hãy rút gọn biểu thức A
A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
A=1+(2-3-4+5)+(6-7-8+9)+...+(1998-1999-2000+2001)+(2002-2003)
A=1+0+0+...+0+(-1)
A=1+(-1)
A=0
Tick cho mk nha
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+...+(-2000+2001+2002-2003)
A=0+0+0+...+0
A=0
mn giải giúp em bài toán với ạ !
BÀI 1 :TÍNH NHANH
A=3/4*5 +3/5*6 +3/6*7 +3/7*8 +...+3/99*100BÁI 2 :KHÔNG THỰC HIỆN PHÉP TÍNH , HÃY SO SÁNH TỔNG SAU VỚI 4
1999/2000 +2000/2001 +2001/2002 +2002/2003
Ta có :
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(A=3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(A=3.\frac{6}{25}\)
\(A=\frac{18}{25}\)
Vậy \(A=\frac{18}{25}\)
Chúc bạn học tốt ~
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(\Rightarrow A=3.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{3.24}{100}\)
\(=\frac{3.4.6}{25.4}\)
\(\Rightarrow A=\frac{18}{25}\)