S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
`S = 1+2-3-5+5+6-7-8+9+10-...+1998-1999-2000+2001+2002`
có :
`(2002 - 1) :1 +1 = 2002` ( số hạng)
`2002 : 4 = 500 (dư 2)`
`=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002`
`=(-4)+(-4)+...+(-4) +2001 +2002` có `500` só `-4`
`=500 .(-4) + 2001+ 2002`
`= (-2000)+2001+2002`
`=1+2002`
`=2003`