Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Juvia Lockser
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 7:22

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)

Thùy Giang
Xem chi tiết
Vui lòng để tên hiển thị
14 tháng 1 2023 lúc 22:59

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

Nguyễn Lê Phước Thịnh
14 tháng 1 2023 lúc 23:01

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

Ngô Hồng Thuận
Xem chi tiết
Nguyễn Tuấn Anh
19 tháng 9 2016 lúc 21:24

Ta nhận thấy : \(\left(x-2y\right)^2\ge0\)

\(\left(x-3\right)^2\ge0\)

\(\left(y-1\right)^2\ge0\)

\(\Rightarrow A=\left(x-2y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+3\ge3\)

Min A = 3 \(\Leftrightarrow\begin{cases}x-2y=0\\x-3=0\\y-1=0\end{cases}\Leftrightarrow\begin{cases}x-2y=0\\x=3\\y=1\end{cases}\Leftrightarrow}\begin{cases}x=3\\y=1\\\end{cases}}\)

giải pt bậc 3 trở lên fr...
Xem chi tiết
mimiru
18 tháng 8 2018 lúc 13:23

đây là toàn lp 3 hả bn

Ngô Thị Thu Huyền
18 tháng 8 2018 lúc 13:25

đây ko phải toán lớp 3

giải pt bậc 3 trở lên fr...
18 tháng 8 2018 lúc 13:26

quên đây là toán lớp 1 

Lê Thị Phương Thảo
Xem chi tiết

a)

(x-2y)2 >= 0 V x,y

(y-2018)>=0  V y

=> P=(ghi lại đề) >= 0

vậy GTNN của p bằng 0

dấu "=" xảy ra (=) \(\hept{\begin{cases}x-2y=0\\y-2018=0\end{cases}}\left(=\right)\hept{\begin{cases}x=2y\\y=2018\end{cases}}\left(=\right)\hept{\begin{cases}y=2018\\x=4036\end{cases}}\)

b) (x+y-3)4 >= 0 V x,y

(x-2y)2 >= V x,y

=> Q=(ghi lại đề) >= 2018

vậy GTNN của Q bằng 2018

dấu "=" xảy ra (=) \(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}\left(=\right)\hept{\begin{cases}x=2y\\3y=3\end{cases}}\left(=\right)\hept{\begin{cases}y=1\\x=2\end{cases}}\)

c) 

(2x + 1/6)4>= 0 V x

=> N=(ghi lại đề) >= -2

vậy GTNN của N bằng -2

dấu "=" xảy ra (=) 2x+1/6=0

(=) 2x=-16

(=) x=-1/12

#Học-tốt

Khách vãng lai đã xóa
Lê Thị Phương Thảo
12 tháng 2 2020 lúc 9:38

Menhera-Kun chữ V rồi gạch đó là j

Khách vãng lai đã xóa

"với mọi" nha bn

#Học-tốt

Khách vãng lai đã xóa
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Nue nguyen
18 tháng 12 2017 lúc 14:03

a)...........................

b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)

\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)

\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)

\(\Rightarrowđpcm\)

c) Bạn tự làm đi tới đây dễ rồi

i
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 4 2019 lúc 22:06

Viết ại ik

Incursion_03
27 tháng 4 2019 lúc 22:08

\(A=\left|x+3\right|+\left|y^2-2y+10\right|\)

     \(=\left|x+3\right|+\left|\left(y-1\right)^2+9\right|\ge0+\left|0+9\right|=9\)

Dấu "=" xảy ra <=> x = - 3 ; y = 1

Hoàng Nguyễn Văn
27 tháng 4 2019 lúc 22:10

Ta có A=|x+3|+|y^2-2y+10|

Xét y^2-2y+10= (y^2-2y+1)+9=(y-1)^2+9>0

=> A=|x+3|+ (y-1)^2+9

Vì |x+3|>=0 ; (y-1)^2>=0=> A>=9 

Dấu = xảy ra <=> x+3=0 và y-1=0 <=> x=-3 và y=1

Vậy

Đặng Thiên Long
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết