Tìm GTNN của \(A=\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\)
Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
Tìm GTNN của mỗi biểu thức sau:
a) \(P=\left(x+30\right)^2+\left(y-4\right)^2+1975 \)
b)\(Q=\left(3x+1\right)^2+\left|2y-\dfrac{1}{3}\right|+\sqrt{5}\)
c)\(R=\dfrac{3}{1-x-x^2}\)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
Tìm GTNN của \(A=\left(x-2y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+3\) .
Ta nhận thấy : \(\left(x-2y\right)^2\ge0\)
\(\left(x-3\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow A=\left(x-2y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+3\ge3\)
Min A = 3 \(\Leftrightarrow\begin{cases}x-2y=0\\x-3=0\\y-1=0\end{cases}\Leftrightarrow\begin{cases}x-2y=0\\x=3\\y=1\end{cases}\Leftrightarrow}\begin{cases}x=3\\y=1\\\end{cases}}\)
giải hệ pt :
\(\hept{\begin{cases}3x^2+6xy+9y^2+\left(x+2y\right)^2\sqrt{x+2y}-3\left(x+2y\right)\sqrt{x+2y}-4\left(x+2y\right)+4\sqrt{x+2y}=0\\\left(\frac{\sqrt[3]{x^2-y^2}}{\sqrt[4]{x}}+\sqrt[4]{\frac{x}{y}}\right)^{2017}+\left(\sqrt[3]{\frac{x}{y}}-\sqrt[4]{\frac{y}{x}}\right)^{2018}=1\end{cases}}\)
TÌM GTNN CỦA BIỂU THỨC :
a, \(P=\) \(\left(x-2y\right)^2\)\(+\) \(\left(y-2018\right)^2\)
b, \(Q=\) \(\left(x+y-3\right)^4\)\(+\) \(\left(x-2y\right)^2\)\(+\) \(2018\)
c, \(N=\) \(\left(2\text{x}+\frac{1}{6}\right)^4\)\(-\) \(2\)
a)
(x-2y)2 >= 0 V x,y
(y-2018)>=0 V y
=> P=(ghi lại đề) >= 0
vậy GTNN của p bằng 0
dấu "=" xảy ra (=) \(\hept{\begin{cases}x-2y=0\\y-2018=0\end{cases}}\left(=\right)\hept{\begin{cases}x=2y\\y=2018\end{cases}}\left(=\right)\hept{\begin{cases}y=2018\\x=4036\end{cases}}\)
b) (x+y-3)4 >= 0 V x,y
(x-2y)2 >= V x,y
=> Q=(ghi lại đề) >= 2018
vậy GTNN của Q bằng 2018
dấu "=" xảy ra (=) \(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}\left(=\right)\hept{\begin{cases}x=2y\\3y=3\end{cases}}\left(=\right)\hept{\begin{cases}y=1\\x=2\end{cases}}\)
c)
(2x + 1/6)4>= 0 V x
=> N=(ghi lại đề) >= -2
vậy GTNN của N bằng -2
dấu "=" xảy ra (=) 2x+1/6=0
(=) 2x=-16
(=) x=-1/12
#Học-tốt
Menhera-Kun chữ V rồi gạch đó là j
"với mọi" nha bn
#Học-tốt
Cho biểu thức A= \(\dfrac{\left(x^2+y\right)\left(\dfrac{1}{4}+y\right)+x^2y^2+\dfrac{3}{4}\left(\dfrac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
a)...........................
b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)
\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)
\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)
\(\Rightarrowđpcm\)
c) Bạn tự làm đi tới đây dễ rồi
Tìm gtnn của A
A=\(\left|\right|x+3\left|+y^2-2y+10\right|\)
\(A=\left|x+3\right|+\left|y^2-2y+10\right|\)
\(=\left|x+3\right|+\left|\left(y-1\right)^2+9\right|\ge0+\left|0+9\right|=9\)
Dấu "=" xảy ra <=> x = - 3 ; y = 1
Ta có A=|x+3|+|y^2-2y+10|
Xét y^2-2y+10= (y^2-2y+1)+9=(y-1)^2+9>0
=> A=|x+3|+ (y-1)^2+9
Vì |x+3|>=0 ; (y-1)^2>=0=> A>=9
Dấu = xảy ra <=> x+3=0 và y-1=0 <=> x=-3 và y=1
Vậy
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
tìm GTNN của Q= \(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)