A= -1^2 + 2^2 - 3^2 + 4^2-.....- 99^2 + 100^2
Rút gọn
A= 2^100+2^99+2^98.....+2+1
B=3^100+3^99+3^98....+3+1
C=4^100+4^99+....+4+1
D=2^100- 2^99+....+2^2 - 2 + 1
E=3^100 - 3^99 + 3^98....- 3 +1
Thu gọn
M= 2 + 2^2 + 2^3 ....+ 2^100
Cho A =2+2^2+2^3+....2^100. Tìm số tự nhiên x sao cho A + 1 = 2x
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
CMR: A= 1/2-2/2^2+3/2^3-4/2^4+....+99/2^99-100/2^100<2/9
CMR A=1/2-2/2^2+3/2^3-4/2^4+...+99/2^99-100/2^100<2/9
Tính A=1+3/2^3+4/2^4+......+99/2^99+100/2^100
Chứng minh rằng
A=1/2 - 2/2^2 + 3/2^3 - 4/2^4 + ...99/2^99 - 100/2^100 < 2/9
\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Rightarrow2A=1-\frac{2}{2}+\frac{3}{2^2}-\frac{4}{2^3}+\frac{5}{2^4}-\frac{6}{2^5}+\frac{7}{2^6}-...+\frac{99}{2^{98}}-\frac{100}{2^{99}}\)
Cộng vế theo vế ta được: \(3A=1+\left(\frac{1}{2}-\frac{2}{2}\right)+\left(-\frac{2}{2^2}+\frac{3}{2^2}\right)+\left(\frac{3}{2^3}-\frac{4}{2^3}\right)+\left(-\frac{4}{2^4}+\frac{5}{2^4}\right)+...+\left(\frac{99}{2^{99}}-\frac{100}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(\Rightarrow3A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Xét \(B=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(\Rightarrow2B=2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{97}}-\frac{1}{2^{98}}\)
Cộng vế theo vế ta được: \(3B=2+\left(1-1\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)
\(\Rightarrow3B=2-\frac{1}{2^{99}}< 2\Rightarrow B< \frac{2}{3}\)
Mà \(3A=B-\frac{100}{2^{100}}\Rightarrow3A< B< \frac{2}{3}\Rightarrow A< \frac{2}{9}\)
mình ko biết câu này nha
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)