Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 1:10

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

Trái tim băng giá
Xem chi tiết
Nguyễn Công Dương
6 tháng 5 2021 lúc 20:04

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

Khách vãng lai đã xóa
Dương Thị Khánh Huyền
Xem chi tiết
Dung Trần
Xem chi tiết
Lưu Quang Đức
Xem chi tiết
Ngyễn Đình Mạnh
Xem chi tiết
trịnh thị ngọc châu
Xem chi tiết
Khanh Nguyễn Ngọc
18 tháng 7 2021 lúc 23:21

\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}\)

\(\Rightarrow2A=1-\frac{2}{2}+\frac{3}{2^2}-\frac{4}{2^3}+\frac{5}{2^4}-\frac{6}{2^5}+\frac{7}{2^6}-...+\frac{99}{2^{98}}-\frac{100}{2^{99}}\)

Cộng vế theo vế ta được: \(3A=1+\left(\frac{1}{2}-\frac{2}{2}\right)+\left(-\frac{2}{2^2}+\frac{3}{2^2}\right)+\left(\frac{3}{2^3}-\frac{4}{2^3}\right)+\left(-\frac{4}{2^4}+\frac{5}{2^4}\right)+...+\left(\frac{99}{2^{99}}-\frac{100}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(\Rightarrow3A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Xét \(B=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2B=2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{97}}-\frac{1}{2^{98}}\)

Cộng vế theo vế ta được: \(3B=2+\left(1-1\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)

\(\Rightarrow3B=2-\frac{1}{2^{99}}< 2\Rightarrow B< \frac{2}{3}\)

Mà \(3A=B-\frac{100}{2^{100}}\Rightarrow3A< B< \frac{2}{3}\Rightarrow A< \frac{2}{9}\)

Khách vãng lai đã xóa
fghdjfsbf
20 tháng 7 2021 lúc 10:54

mình ko biết câu này nha

Khách vãng lai đã xóa
Nguyễn Trung Hải
20 tháng 7 2021 lúc 19:08

I DON'T KNOW

Khách vãng lai đã xóa
Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Phạm Nguyễn Tiến Đạt
Xem chi tiết
Vuquangminh2611
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

ĐỊT CON MẸ MÀY
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Kai kai kai
14 tháng 10 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn

Nguyễn Minh Nhật
Xem chi tiết