Tìm Min hoặc Max
a)A=(x-3)^2+(x-11)^2
b)B=(x+1)(x-2)(x-3)(x-6)
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
Tìm GTNN hoặc GTLN
A=(x+3)(x-11)+2003
B=(x-2)(x-5)(x^2-7x-10)
C=a^2+2ab+2b^2-2b+2
Sorry nhá mk nhầm dấu + nên kq sai :
Ta có : (x + 3)(x - 11) + 2003
= x2 - 8x + 1970
= x2 - 8x + 16 + 1954
= (x - 4)2 + 1954
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1954 \(\ge1954\forall x\)
Vậy GTNN của biểu thức là : 1954 khi và chỉ khi x = 4
Ta có : (x + 3)(x - 11) + 2003
= x2 - 8x + 33 + 2003
= x2 - 8x + 2026
= x2 - 8x + 16 + 2010
= (x - 4)2 + 2010
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 2010 \(\ge2010\forall x\)
Vậy GTNN của biểu thức là : 2010 khi và chỉ khi x = 4
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
1. a,b>0, a+b<=1. tìm min P= 1/(a^3+b^3)+1/a^2b+ab^2 ( Dùng BĐT cộng mẫu cho 3 số)
2. a,b,c>0, a^2+b^2+c^2>=1. tìm min P= a+b+c+1/abc
3. x,y,z>0, 1/x+1/y+1/z=4. tìm min P= 1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z)
Tìm min
A=(x-2)^2+|x-1|+5
B=2(x+1)^2-|x+3|-11
Tìm min
A=(x-2)^2+|x-1|+5
B=2(x+1)^2-|x+3|-11
B= (x-3)^2 - (x-11)^2
C= (x+1)(x-2)(x-3)(x-6)
\(B=x^2-6x+9-x^2+22x-121\)
\(=16x-112\)
\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(=\left(x^2-5x\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=0 hoặc x=5
Tìm Min:
B= (x-3)^2 - (x-11)^2
C= (x+1)(x-2)(x-3)(x-6)
\(B=x^2-6x+9-x^2+22x-121\)
\(=16x-112\)
\(C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(=\left(x^2-5x\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=0 hoặc x=5