Bài 1 Tìm các số x:y:z biết :x2+14y2+t2+2xy+6yt−12y+9=0
Bài 1 Tìm các số x:y:z biết :\(x^2+14y^2+t^2+2xy+6yt-12y+9=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(t^2+6yt+9y^2\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(t+3y\right)^2+\left(2y-3\right)^2=0\)
Dấu '=' xảy ra khi y=3/2; x=-3/2; t=-3y=-9/2
Tìm các số x, y, t biết
x^2+14y^2+t^2+2xy+6yt-12y+9=0
\(x^2+2xy+y^2+9y^2+6yt+t^2+4y^2-12y+9=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(3y+t\right)^2+\left(2y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\3y+t=0\\2y-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\t=\frac{-9}{2}\\x=\frac{-3}{2}\end{matrix}\right.\)
pt <=> (x2 + 2xy + y2) + (t2 + 6yt + 9y2) + (4y2 - 12y + 9) = 0
<=> (x + y)2 + (t + 3y)2 + (2y - 3)2 = 0
<=> \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(t+3y\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=-y=-\dfrac{3}{2}\\t=-3y=-\dfrac{9}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
Bài tập 4: CMR không có các số x, y, z thỏa mãn mỗi đẳng thức sau:
a) 2x2 + y2 - 2xy + x + 2 = 0
b) x2 + 9y2 + 4z2 - 2x + 12y - 4z +20 = 0
c) –x2 - 26y2 +10xy – 20y - 150 = 0
\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)
\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)
Tìm các số thỏa mãn:x2+2y2+2xy+10x+12y+26=0
\(x^2+2y+2xy+10x+12y+26=0\)
\(\Leftrightarrow\left[\left(x^2+2xy+y^2\right)+\left(10x+10y\right)+25\right]+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left[\left(x+y\right)^2+10\left(x+y\right)+25\right]+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x+y+5\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y+5\right)^2+\left(y+1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+5=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-1\end{cases}}}\)
Vậy \(x=-4;y=-1\)
tìm x,y biết : x^2 + 2y^2+ 2xy+ 10x + 12y+ 26 = 0
<=> [ (x^2+2xy+y^2)+ 2.(x+y).5 +25 ] + (y^2+2y+1)=0
<=> (x+y+5)^2 + (y+1)^2 = 0
<=> x+y+5 = 0 và y+1 = 0
<=> x=-4 và y=-1
Ta có: x2+2y2+2xy+10x+12y+26=0
=> (x2+2xy+y2)+(10x+10y)+25+(y2+2y+1)=0
=> (x+y)2+10(x+y)+25+(y2+2y+1)=0
=> (x+y+5)2+(y+1)2=0
=> (x+y+5)2=(y+1)2=0
=> x+y+5=y+1=0
(+) y+1=0=> y=-1
(+) x+y+5=0 mà y=-1=> x-1+5=0
=> x+4=0=> x=-4
Vậy (x,y)=(-4;-1)
Tìm các số x,y,z biết rằng
x:y:z=3:4:5 và \(5z^2-3x^2-2y^2=594\)
3(x-1)=2(y-2) ; 4(y-2)=3(z-3) và 2x+3y-z=50
\(\frac{12x-15y}{7}=\frac{20z-12y}{9}=\frac{15y-20z}{11}\) và x+y+z=48
Viết các đa thức sau thành tích
1. ( 3x + 2)2 - 4
2. 4x2 - 25y2
3. 4x2- 49
4. 8z3 + 27
5. \(\dfrac{9}{25}\)x4 - \(\dfrac{1}{4}\)
6. x32 - 1
7. 4x2 + 4x + 1
8. x2 - 20x + 100
9. y4 -14y2 + 49
10. 125x3 - 64y3
1. ( 3x + 2)2 - 4
= (3x+2-2)(3x+2+2)
= 3x(3x+4)
2. 4x2 - 25y2
= (2x-5y)(2x+5y)
3. 4x2- 49
=(2x-7)(2x+7)
4. 8z3 + 27
=(2z+3)(4x2-6z+9)
5. \(\dfrac{9}{25}x^4-\dfrac{1}{4}\)
= \((\dfrac{3}{5}x^2-\dfrac{1}{2})(\dfrac{3}{5}x^2+\dfrac{1}{2})\)
6. x32 - 1
=(x16-1)(x16+1)
7. 4x2 + 4x + 1
=(2x+1)2
8. x2 - 20x + 100
=(x-10)2
9. y4 -14y2 + 49
=(y2-7)2
10. 125x3 - 64y3
= (5x-4y)(25x2+20xy+16y2)
1) \(\left(3x+2\right)^2-4=\left(3x+2+2\right)\left(3x+2-2\right)=3x\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
7) \(4x^2+4x+1=\left(2x+1\right)^2\)
8) \(x^2-20x+100=\left(x-10\right)^2\)
9) \(y^4-14y^2+49=\left(y^2-7\right)^2\)
Cho hệ phương trình x 2 + 2 x y + 8 x = 3 y 2 + 12 y + 9 x 2 + 4 y + 18 − 6 x + 7 − 2 x 3 y + 1 = 0 có nghiệm là (a; b). Khi đó giá trị biểu thức T = 5 a 2 + 4 b 2
A. T = 24
B. T = 21
C. T = 5
D. T = 4
Điều kiện x ≥ − 7 y ≥ − 1 3 *
x 2 + 2 x y + 8 x = 3 y 2 + 12 y + 9 ( 1 ) x 2 + 4 y + 18 − 6 x + 7 − 2 x 3 y + 1 = 0 ( 2 )
Có 1 ⇔ x 2 + 2 y + 4 x − 3 y 2 − 12 y − 9 = 0 , ta coi (1) là phương trình bậc hai ẩn x và y là tham số, giải x theo y ta được x = − 3 y − 9 x = y + 1
Với x = − 3 y − 9 thì (*) ⇒ − 3 y − 9 ≥ − 7 y ≥ − 1 3 ⇔ y ≤ − 2 3 y ≥ − 1 3 (vô lí)
Hệ phương trình có nghiệm là 2 ; 1 ⇒ a = 2 , b = 1 ⇒ T = 24
Đáp án cần chọn là: A
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,6xy + 4x - 3y = 8 b,2xy - x + 2y - 13 = 0 c,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự