Chứng minh: \(\frac{17}{21}+\frac{17}{20}+\frac{17}{19}>2.\)
\(\frac{x-19}{19}+\frac{x-20}{20}+\frac{x-21}{21}=\frac{x-17}{17}+\frac{x-16}{16}+\frac{x-15}{15}\)
Tìm x ,.... giai ho minh nha may ban
cộng 1 vào từ số hạng ( hai vế cùng 3 số hạng=> không đổi)
Tử số còn lại x
\(\Leftrightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}=\frac{x}{17}+\frac{x}{16}+\frac{x}{15}\)
\(\Leftrightarrow\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}-\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)x=0\)
cái (...) khác không=> x =0 là nghiệm duy nhất
Ta có
\(\frac{x-19}{19}+\frac{x-20}{20}+\frac{x-21}{21}=\frac{x-17}{17}+\frac{x-16}{16}+\frac{x-15}{15}\)
\(\Leftrightarrow\frac{x}{19}-1+\frac{x}{20}-1+\frac{x}{21}-1=\frac{x}{17}-1+\frac{x}{16}-1+\frac{x}{15}-1\)
\(\Leftrightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}-3=\frac{x}{17}+\frac{x}{16}+\frac{x}{15}-3\)
\(\Leftrightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}=\frac{x}{17}+\frac{x}{16}+\frac{x}{15}\)
\(\Rightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}-\frac{x}{17}-\frac{x}{16}-\frac{x}{15}=0\)
\(\Leftrightarrow x\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}-\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}-\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)\ne0\)
Nên phương trình chỉ co nghiệm duy nhất là x=0
Vậy x=0
chứng minh rằng:\(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}\)
-5 phan14 và 30 phân -84 có bằng nhau không tại sao
\(\frac{2}{6} + \frac{9}{20} - \frac{11}{30} + \frac{13}{42} - \frac{15}{56} + \frac{17}{72} - \frac{19}{90} + \frac{21}{110} - \frac{23}{132}\)
Tính A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}}{\frac{19}{1}+\frac{18}{2}+\frac{17}{3}+...+\frac{3}{17}+\frac{2}{18}+\frac{1}{19}}\)
* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19 ( vì ta cộng với 19 số 1 nên phải trừ 19 )
= \(\frac{20}{1}\)+ \(\frac{20}{2}\)+ \(\frac{20}{3}\)+...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)- 19
= \(\frac{20}{2}\)+ \(\frac{20}{3}\)+...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
= \(\frac{20}{2}\)+ \(\frac{20}{3}\)+ ...+ \(\frac{20}{17}\)+ \(\frac{20}{18}\)+ \(\frac{20}{19}\)+ \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+ \(\frac{1}{3}\)+...+ \(\frac{1}{17}\)+ \(\frac{1}{18}\)+ \(\frac{1}{19}\)+ \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)= \(\frac{1}{20}\)
Phùng Quang Thịnh biến đổi sai 1 chỗ kìa
-19 = \(\frac{20}{20}-20\)chứ mà bạn
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}}{\frac{19}{1}+\frac{18}{2}+\frac{17}{3}+...+\frac{3}{17}+\frac{2}{18}+\frac{1}{19}}\)
TÍNH :
\(A=\frac{\frac{5}{18}+\frac{6}{19}+\frac{7}{20}+\frac{8}{21}+....+\frac{21}{34}-17}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{33.34}}\)
Cho \(S=\frac{17}{18}+\frac{18}{19}+\frac{19}{20}+\frac{20}{17}\)
SO sánh S với 4
\(\frac{\left(1+17\right)+\left(1+\frac{17}{2}\right)+\left(1+\frac{17}{3}\right)+........+\left(1+\frac{17}{19}\right)}{\left(1+19\right)+\left(1+\frac{19}{2}\right)+\left(1+\frac{19}{3}\right)+........+\left(1+\frac{19}{17}\right)}\)
sắp xếp \(\frac{25}{24};\frac{18}{17};\frac{21}{20};\frac{24}{23};\frac{19}{18}\)
từ lớn đến bé
25 phần 24 , 19 phần 18 , 21 phần 20 , 24 phần 23 , 18 phần 17