cộng 1 vào từ số hạng ( hai vế cùng 3 số hạng=> không đổi)
Tử số còn lại x
\(\Leftrightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}=\frac{x}{17}+\frac{x}{16}+\frac{x}{15}\)
\(\Leftrightarrow\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}-\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)x=0\)
cái (...) khác không=> x =0 là nghiệm duy nhất
Ta có
\(\frac{x-19}{19}+\frac{x-20}{20}+\frac{x-21}{21}=\frac{x-17}{17}+\frac{x-16}{16}+\frac{x-15}{15}\)
\(\Leftrightarrow\frac{x}{19}-1+\frac{x}{20}-1+\frac{x}{21}-1=\frac{x}{17}-1+\frac{x}{16}-1+\frac{x}{15}-1\)
\(\Leftrightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}-3=\frac{x}{17}+\frac{x}{16}+\frac{x}{15}-3\)
\(\Leftrightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}=\frac{x}{17}+\frac{x}{16}+\frac{x}{15}\)
\(\Rightarrow\frac{x}{19}+\frac{x}{20}+\frac{x}{21}-\frac{x}{17}-\frac{x}{16}-\frac{x}{15}=0\)
\(\Leftrightarrow x\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}-\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}-\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)\ne0\)
Nên phương trình chỉ co nghiệm duy nhất là x=0
Vậy x=0