Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Thi Khanh Huyen
Xem chi tiết
Anh PVP
Xem chi tiết
Sahara
24 tháng 4 2023 lúc 20:38

\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm

Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:41

Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x

=>Q(x) vô nghiệm

Phương Hà
Xem chi tiết
Minh Nhân
30 tháng 6 2021 lúc 14:53

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN 

Tường Vy
Xem chi tiết
TV Cuber
7 tháng 5 2022 lúc 23:17

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

TV Cuber
7 tháng 5 2022 lúc 23:15

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

Akai Haruma
7 tháng 5 2022 lúc 23:17

Lời giải:
Ta thấy:

$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$

$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$

Do đó $x=0$ không phải nghiệm của $Q(x)$

Cỏ dại
Xem chi tiết
Đào Thị Thùy Dương
Xem chi tiết
Hồ Đức Việt
8 tháng 8 2021 lúc 21:47

Ta có: 

x^4+2x^3+2x^2+1

=x^2(x^2+2x+2)+1

Ta thấy x^2(x^2+2x+2)> hoặc =0 nên 

x^2(x^2+2x+2)+1>0 nên ko có nghiệm

Chúc học tốt

Khách vãng lai đã xóa
Catherine Lee
Xem chi tiết
Nguyễn Thanh Hằng
21 tháng 3 2018 lúc 19:11

\(f\left(x\right)=x^2+2x+3\)

\(\Leftrightarrow f\left(x\right)=x^2+x+x+3\)

\(\Leftrightarrow f\left(x\right)=\left(x^2+x\right)+\left(x+3\right)\)

\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+\left(x+1\right)+3\)

\(\Leftrightarrow f\left(x\right)=\left(x+1\right)^2+3\)

Với mọi x ta có :

\(+,\left(x+1\right)^2\ge0\)

+, \(3>0\)

\(\Leftrightarrow\left(x+1\right)^2+3>0\)

\(\Leftrightarrow f\left(x\right)>0\)

\(\Leftrightarrow f\left(x\right)\) vô nghiệm

Yun Phạm
Xem chi tiết
Trương Minh Phúc
23 tháng 4 2018 lúc 22:28

x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2

Mà (x+1)^2 \(\ge\)0

=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0 

Suy ra đa thức vô nghiệm

ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0

=> x2 + 2x + 3 > 0

=> đa thức trên ko có nghiệm

Chúc bn hok tốt!!!^^

#DUS-VIỆT
23 tháng 4 2018 lúc 22:16

\(Ta\)\(có\):

\(x^2\ge0\)với x bất kì

\(2x\ge0\)với x bất kì

\(3>0\)

\(\Rightarrow\)f(x)=x^2+2x+3>0 với x bất kì

Vậy M(x) không có nghiệm

Trần Khởi My
Xem chi tiết
Akai Haruma
1 tháng 4 2019 lúc 0:39

Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$

a) Theo đề bài:

\(f(x)=3x^3+4x^2+2x+1\)

\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)

Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)

b)

\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :

\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)

\(\Leftrightarrow -a+b-c+d=0\)

\(\Leftrightarrow a+c=b+d\) (đpcm)