Cho A=\(\frac{2n-1}{3-n}\).Tìm giá trị nguyên của n để A là một số nguyên
1. Tìm các giá trị nguyên của n để biểu thức A = \(\frac{2n+5}{n-3}\) có giá trị là một số nguyên.
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
a) Cho \(A=\frac{2n-5}{n+3}\) . Tìm các giá trị của n để A có giá trị nguyên
b) Tìm n thuộc Z để tích các số hữu tỉ \(\frac{19}{n-1}.\frac{n}{9}\) có gía trị là số nguyên
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Cho phân số \(A=\frac{2n-1}{n-3}\)
a) Tìm số nguyên n để A có giá trị nguyên.
b) Tìm số nguyên n để A có giá trị lớn nhất.
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
Cho phân số A=\(\frac{2n-1}{n-3}\)
a) Tìm số nguyên n để A có giá trị nguyên
b) Tìm số nguyên n để A có giá trị lớn nhất
A=\(\frac{2n-1}{n-3}\)
a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3
2n-1
=2n-6+6-1
=2.(n-3)+5
n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3
Vậy 5 cũng phải chia hết cho n-3
+n-3=1=>n=4
+n-3=5=>n=8
+n-3=-1=>n=2
+n-3=-5=>n=-2
Vậy n thuộc -2;2;8;4
b)Dễ thấy,để A có giá trị lớn nhất n=8
Chúc em học tốt^^
cho phân số \(A=\frac{n^2-3}{2n^2-1}\)với n là số nguyên
a)tìm giá trị nguyên của n dể A đạt giá trị nhỏ nhất
b)tìm giá trị nguyên của n để A đạt giá trị nguyên
các bạn làm ơn giải giúp mình bài này nhanh nha
a/ mk chua tim ra , thong cam
b/ mk tìm n = -2 ., -1 hoặc 0
1) Cho p/số A=\(\frac{2n+3}{n+1}\)
(n là số nguyên)
a) tìm điều kiện của n để A xác định ( xác định hay còn gọi là tồn tại )
b) Tìm n để A có giá trị nguyên ( "có giá trị nguyên" hay còn đc ghi là "có giá trị là 1 số nguyên" nhé mí bạn ^.' )
a) Để A được xác định thì \(n\ne-1\)
b) Ta có:
\(A=\frac{\left(2n+2\right)+1}{n+1}\)
\(A=\frac{2\left(n+1\right)+1}{n+1}\)
\(A=\frac{2\left(n+1\right)}{n+1}+\frac{1}{n+1}\)
\(A=2+\frac{1}{n+1}\)
Để A có giá trị nguyên thì \(\left(n+1\right)\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{-1;1\right\}\)
Nên \(\left(n+1\right)\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-2;0\right\}\)
Vậy để A có giá trị nguyên thì \(n=-2\)hoặc \(n=0\)
a)A xđ <=> \(n+1\ne0\Leftrightarrow n\ne-1\)
b) A thuộc Z <=> \(\frac{2n+3}{n+1}\in Z\)<=> \(\left(2n+3\right)⋮\left(n+1\right)\)
Giải tiếp nha bạn :>
bạn ghi z mình bó tay @.@ bạn phải giải rõ ra mik ms hiểu
Bài 1: Cho phân số \(A=\frac{6n-4}{2n+3}\); n là số nguyên
a) Tìm n để A nhận được giá trị là số nguyên
b) Tìm n để A rút gọn được.
c) Tìm n để A đạt GTLN và tính giá trị đó.
Bài 2: Cho phản số \(B=\frac{4n+1}{2n-3}\); n là số nguyên
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTNN? GTLN? Tính các giá trị đó
Bài 3: Cho phân số \(C=\frac{8n+193}{4n+3}\); n là số nguyên
a) Tìm n để C có giá trị là số nguyên tố
b) Tìm n để C là phân số tối giản
c) Với giá trị nào của n từ khoảng 150 đến 170 thì phân số C rút gọn được
d) Tìm n để C đạt GTNN? GTLN? Tính các giá trị đó
Cho A= \(\frac{2n+3}{n-2}\)( \(n\ne2\))
a, tìm số nguyên n để A là một số nguyên
b, tìm số nguyên n để a có giá trị lớn nhất, tìm giá trị lớn nhất đó
a)\(A=\frac{2n+3}{n-2}\left(n\:\ne2\right)\)
\(\Rightarrow\frac{2n-4+7}{n-2}\)\(=\)\(\frac{2\left(n-2\right)+7}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)
\(2\inℤ\Rightarrow\frac{7}{n-2}\inℤ\Rightarrow7⋮\left(n-2\right)\)\(\Rightarrow\left(n-2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng :
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 5 | 9 |
Vậy \(n\in\left\{-5;1;3;9\right\}\)