Tìm x:
a,(7.x-11)= 25 . 52 . 200
b,16 . 4x = 325
Tìm x:
a) 5x(x-2)+(2-x)=0
b) x(2x-5)-10x+25=0
c) \(\dfrac{25}{16}\)-4x2+4x-1=0
d)x4+2x2-8=0
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
a) \(5x\left(x-2\right)+\left(2-x\right)=0\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(x\left(2x-5\right)-10x+25=0\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{5}{2}\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(x-\dfrac{9}{8}\right)\left(x+\dfrac{1}{8}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{9}{8}=0\\x+\dfrac{1}{8}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=-\dfrac{1}{8}\end{matrix}\right.\)
d) \(x^4+2x^2-8=0\)
\(\Rightarrow\left(x^4+2x^2+1\right)-9=0\)
\(\Rightarrow\left(x^2+1\right)^2-3^2=0\)
\(\Rightarrow\left(x^2+1-3\right)\left(x^2+1+3\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\end{matrix}\right.\) \(\Rightarrow x^2=2\) \(\Rightarrow x=\pm\sqrt{2}\)
Tìm x:
a) 36x3-4x=0
b) 3x(x-2)-2+x=0
c) (x3-x2)-4x2+8x-4=0
d) x2-6x-16=0
e) x4-6x2-7=0
Tìm X:
a)(x-4)(x+4)=9
b)x2-4x+4-(5x-2)2=0
c)4x2+4+1-x2-10x-25=0
d)(x2+x+7)(x2+x-7)=(x2+x)2-7x
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
Tìm x:
a) 36x3-4x=0
b) 3x(x-2)-2+x=0
c) (x3-x2)-4x2+8x-4=0
d) x2-6x-16=0
e) x4-6x2-7=0
(Mình cần gấp ạ)
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
d) Ta có: \(x^2-6x-16=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
e) Ta có: \(x^4-6x^2-7=0\)
\(\Leftrightarrow\left(x^2-7\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\in\left\{\sqrt{7};-\sqrt{7}\right\}\)
Tìm x:
a)3.(x-2)+2.(x-3)=5
b)(2x-8)2-16=0
c)(2x-1)2-(4x+1).(x-3)=3
a)3(x-2)+2(x-3)=5
=>3x-6+2x-6=5
=>5x=17
=>x=17/5
b)(2x-8)^2=16
TH1:2x-8=4=>x=6
TH2:2x-8=-4=>x=2
\(a,\Leftrightarrow3x-6+2x-6=5\\ \Leftrightarrow5x-12=5\\ \Leftrightarrow x=\dfrac{17}{5}\\ b,\left(2x-8\right)^2-16=0\\ \Leftrightarrow\left(2x-12\right)\left(2x-4\right)=0\\ \Leftrightarrow4\left(x-6\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-4x+1-4x^2+11x+3=3\\ \Leftrightarrow7x=-1\\ \Leftrightarrow x=-\dfrac{1}{7}\)
Tìm x:
a) x2+9x=0
b) (x+4)2-16=0
c) x3-16x=0
d) x2-10x+25=0
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
Tìm x:
a) (x + 2) (x - 4) - x2 = 36
b) (x - 2)(4x + 1) - 4x(x + 7) = 1
c) x(x - 10) - x + 10 = 0
a: \(\Leftrightarrow x^2-2x-8-x^2=36\)
=>-2x=44
hay x=-22
b: \(\Leftrightarrow4x^2+x-8x-2-4x^2-27x=1\)
=>-34x=3
hay x=-3/34
c: =>(x-10)(x-1)=0
=>x=10 hoặc x=1
Bài3:Tìm x:
a) 71 – (33 + x) = 26 b) (x + 73) – 26 = 76 c) 45 – (x + 9) = 6 d) 89 – (73 – x) = 20 e) 4(x + 41) = 400 f) 11(x – 9) = 77 | g) (x + 7) – 25 = 13 h) 198 – (x + 4) = 120 i) 5(x – 9) = 350 j) 2x – 49 = 5.32 k) 25 + 3(x – 8) = 106 l) 32(x + 4) – 52 = 5.22 | m) 200 – (2x + 6) = 43 n) 2(x- 51) = 2.23 + 20 o) 450 : (x – 19) = 50 p) 4(x – 3) = 72 – 110 q) 156 – (x+ 61) = 82 r) (x-35) -120 = 0 |
a: Ta có: \(71-\left(x+33\right)=26\)
\(\Leftrightarrow x+33=45\)
hay x=12
b: Ta có: \(\left(x+73\right)-26=76\)
\(\Leftrightarrow x+73=102\)
hay x=29
c: Ta có: \(45-\left(x+9\right)=6\)
\(\Leftrightarrow x+9=39\)
hay x=30
a) 71 - ( 33 + x ) = 26
(33 + x ) = 71 -26
33 + x = 45
x = 45 - 33 = 12
b) ( x + 73 ) - 26 = 76
( x + 73 ) = 102
x = 102 - 73 = 29
c) 45 - ( x + 9 ) = 6
( x + 9 ) = 45 - 6 = 39
x = 39 - 9 = 30
d) 89 - ( 73 - x ) = 20
73 - x = 89 - 20
73 - x = 69
x = 73 - 69 = 4
e) 4(x+41) = 400
x + 41 = 400 : 4 = 100
x = 100 - 41 = 59
f) 11(x-9 ) = 77
x - 9 = 77 : 11 = 7
x = 7 + 9 = 16
g) x + 7 = 25 + 13 = 38
x = 38 - 7 = 31
h) x + 4 = 198 - 120 = 78
x = 78 - 4 = 74
i) x - 9 = 350 : 5 = 70
x = 70 + 9 = 79
j) 2x - 49 = 5 . 9 = 45
2x = 45 + 49 = 94
x = 94 : 2 = 47
k) 25 + 3( x - 8 ) = 106
3(x-8 ) = 106 - 25 = 81
x - 8 = 81 : 3 = 27
x = 27 +8= 35
l) 9( x + 4 ) - 25 = 20
9( x + 4 ) = 20 + 25 = 45
x + 4 =45 : 9 = 5
x = 5 - 4 = 1
m) 200 - ( 2x + 6 ) = 64
2x + 6 = 200 - 64 = 136
2x = 136 - 6 = 130
x = 130 : 2 = 65
n) 2(x-51) = 16 + 20 = 36
x - 51 = 36 : 2 = 13
x = 13 + 51 = 64
o) 450 : ( x - 19 ) = 50
x - 19 = 450 : 50 = 9
x = 19 + 9 = 28
p)4(x-3) = 49 - 1 = 48
x - 3 = 48 : 4 = 12
x + 15
q) 156 - ( x+61 ) = 82
x + 61 = 156 - 82 = 74
x = 74 - 61 = 13
r) ( x - 35 ) - 120 = 0
x - 35 = 120
x = 120 + 35 = 155
Tìm x:
a).8x2 - 5=67
b).(4x - 2)4=16
`#3107`
a)
`8x^2 - 5 = 67 `
`=> 8x^2 = 67 + 5`
`=> 8x^2 = 72`
`=> x^2 = 9`
`=> x^2 = (+-3)^2`
`=> x = +-3`
Vậy, `x \in {-3;3}`
b)
`(4x - 2)^4=16`
`=> (4x - 2) = (+-2)^4`
`=> ` TH1: `4x - 2 = 2`
`=> 4x = 4`
`=> x =1`
TH2: `4x - 2 = -2`
`=> 4x = 0`
`=> x=0`
Vậy, `x \in {0; 1}.`
a) \(8x^2-5=67\)
\(8x^2=72\)
\(x^2=9\)
\(x=3\)
Vậy x = 3
b) \(\left(4x-2\right)^4=16\)
\(\left(4x-2\right)^2=4\)
\(4x-2=2\)
\(4x=4\)
\(x=1\)
Vậy x = 1
Tìm x:
a)\(\sqrt{3x-6}\)=3
b)\(\sqrt{5x-16}\)=2
c)Tìm điều kiện xác định của biểu thức: B=\(\dfrac{2x-3}{x^2-4x+3}\)
a) ĐK: x ≥ 2
\(\sqrt{3x-6}=3\)
\(\Leftrightarrow3x-6=9\)
<=> 3x = 15
<=> x = 5
Vậy:....
b) ĐK: 5x - 16 ≥ 0
<=> 5x ≥ 16
<=> x ≥ 16/5
\(\sqrt{5x-16}=2\)
<=> 5x - 16 = 4
<=> 5x = 20
<=> x = 4
c) ĐK: \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
bình phương hai vế ta được:
a)điều kiện của x:x≥2
3x-6=9 <=> x=5(nhận)
b)ĐK: x≥16/5
5x-16=4 <=>x=4(nhận)
c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)= \(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)
ĐKXĐ: x≠3 ;x≠1
a,\(\sqrt{3x-6}=3\) (với x\(\ge\)2)
=>\(\left(\sqrt{3x-6}\right)^2=3^2\)
<=>\(3x-6=9\)<=>\(3x=9+6\)<=>x=\(\dfrac{15}{3}\)=5(thỏa mãn)
b,\(\sqrt{5x-16}=2\) (với x\(\ge\)16/5)
=>\(\left(\sqrt{5x-16}\right)^2=2^2\)<=>\(5x-16=4< =>5x=20< =>x=4\)(thỏa mãn)
c,B xác định khi \(x^2-4x+3\ne0< =>x^2-2.2.x+2^2-1\ne0\)
\(< =>\left(x-2\right)^2-1\ne0\)
\(< =>\left(x-2+1\right)\left(x-2-1\right)\ne\)0
\(< =>\left(x-1\right)\left(x-3\right)\ne0\)
\(< =>\left[{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)