Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Sam Sam
Xem chi tiết
Trang
Xem chi tiết
alibaba nguyễn
6 tháng 12 2016 lúc 15:46

Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)

Thế vào bài toán trở thành 

Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)

Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Từ (1) ta có

\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)

\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

Ta lại có

\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

Hoàng Lê Bảo Ngọc
6 tháng 12 2016 lúc 16:43

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

\(\Rightarrow M=\frac{2013}{2}\)

Nguyễn Huy Tú
8 tháng 12 2016 lúc 9:41

đây là bài trong đề thi tớ mà, lúc đó là 5/12 sao bạn chép ra đây để hỏi?

Vũ Đức
Xem chi tiết
Wayne Rooney
Xem chi tiết
Bùi Thế Hào
19 tháng 3 2018 lúc 15:25

\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

=> 2a-2b+2c=2b <=> a+c=2b. Chia cả 2 vế cho c ta được: \(1+\frac{a}{c}=\frac{2b}{c}\)

Tương tự: \(1+\frac{c}{b}=\frac{2a}{b}\) và \(1+\frac{b}{a}=\frac{2c}{a}\)

=> \(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)=\frac{2a}{b}.\frac{2c}{a}.\frac{2b}{c}=\frac{8.abc}{abc}=8\)

Đáp số: 8

Wayne Rooney
19 tháng 3 2018 lúc 16:51

tại sao 2a-2b+2c=2b lại suy ra a+c=2b vậy bạn

Bùi Thế Hào
19 tháng 3 2018 lúc 16:59

Thì 2a-2b+2c=2b  <=> 2a+2c=2b+2b <=> 2(a+c)=4b => a+c=2b

Thiên Ân
Xem chi tiết
Nalumi Lilika
9 tháng 7 2019 lúc 8:35

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{2\left(a+b+c\right)}{a+b+c}\)= 2

Suy ra

a + b = 2c

b + c = 2a

a + c = 2b

M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

    = \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

    =\(\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)

    =\(\frac{8abc}{abc}\)

    = 8

Lăng Nhược Y
Xem chi tiết
Lung Thị Linh
Xem chi tiết
Trần Hoàng Việt
5 tháng 11 2017 lúc 10:57

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

zZz Cool Kid_new zZz
27 tháng 12 2018 lúc 16:42

dễ!Ta có:

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,Ta được:

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\end{cases}}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)\(\Rightarrow\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}\)

Xong!

Lê Quang Trường
Xem chi tiết
Mất nick đau lòng con qu...
30 tháng 11 2018 lúc 8:07

hay ko = hên :)) nghĩ bừa cái ra lun 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)\(\Leftrightarrow\)\(\frac{1}{a}+1=1-\frac{1}{b}+1-\frac{1}{c}\)

\(\Leftrightarrow\)\(\frac{a+1}{a}=\frac{b-1}{b}+\frac{c-1}{c}\ge2\sqrt{\frac{\left(b-1\right)\left(c-1\right)}{bc}}\)

Tương tự ta cũng có : 

\(\frac{b+1}{b}\ge2\sqrt{\frac{\left(c-1\right)\left(a-1\right)}{ca}};\frac{c+1}{c}\ge2\sqrt{\frac{\left(a-1\right)\left(b-1\right)}{ab}}\)

Nhân theo vế ta được : 

\(\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{abc}\ge8\sqrt{\frac{\left(a-1\right)^2\left(b-1\right)^2\left(c-1\right)^2}{a^2b^2c^2}}=\frac{8\left(a-1\right)\left(b-1\right)\left(c-1\right)}{abc}\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le\frac{1}{8}\left(a+1\right)\left(b+1\right)\left(c+1\right)\) ( đpcm ) 

...

Thắng Nguyên
Xem chi tiết
Kiệt Nguyễn
28 tháng 8 2020 lúc 9:36

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

Khách vãng lai đã xóa