Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Khương Vũ Phương
Xem chi tiết
dau tien duc
11 tháng 4 2018 lúc 22:27

min=\(\left\{...................\right\}\)

max=\(\left\{.........................\right\}\)

Đỗ Gia Huy
Xem chi tiết
fan FA
13 tháng 8 2016 lúc 13:56

1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2]) 
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα 
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2 
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3. 
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị. 

2. Đặt x = cosα và y = sinα (với α trên [0,3π/2]) 
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α) 
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1. 
Ta áp dụng P' = 0 tiếp.

Nguyễn Phương Thảo
Xem chi tiết
Tran Le Khanh Linh
21 tháng 4 2020 lúc 20:40

\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\\x^2+y^2+xy=3\end{cases}\left(a\ge0\right)}}\)

Do đó: \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases}}\)

Điều kiện có nghiệm là: \(\Delta=S^2-4P\ge0\)và a>=0 nên 0 =<a =< 4

Ta có: \(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)

=> \(Min_T=1\)khi x=1 và y=1 hoặc x=-1; y=-1

\(Max_T=9\)khi \(x=\sqrt{3};y=-\sqrt{3}\)hoặc \(x=-\sqrt{3};y=\sqrt{3}\)

Khách vãng lai đã xóa
Vũ Đức Vương
Xem chi tiết
IS
1 tháng 7 2020 lúc 16:43

Đặt \(a=3x^2+xy+2y^2=>0\le a\le2\)

xét 2 TH

+) Nếu a=0 thì x=y=0 nên P =0

+) nếu \(a\ne0\)thì x hoặc y phải khác 0

xét biểu thức

\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}\)

nếu y=0 thì \(x\ne0=>\frac{P}{a}=\frac{1}{3}< P=\frac{a}{3}\le\frac{2}{3}\)

-xét TH y khác 0 , khi đó đặt \(t=\frac{x}{y}\), ta có

\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}=\frac{t^2+3t-1}{3t^2+t+2}\)

gọi m là một giá trị \(\frac{P}{a}\), khi đó PT sau có nghiệm

\(m=\frac{t^2+3t-1}{3t^2+t+2}\)

\(=>\left(3m-1\right)t^2+\left(m-3\right)t+2m+1=0\left(1\right)\)

nếu \(m=\frac{1}{3}\left(thì\right)t=\frac{5}{8}.Nếu\left(m\ne\frac{1}{3}\right)thì\left(1\right)\)là PT bậc 2 có nghiệm khi zà chỉ khi

\(\left(m-3\right)^2-4\left(3m-1\right)\left(2m+1\right)\ge0\)

\(\Leftrightarrow23m^2+10m-13\le0\Leftrightarrow m\le\frac{13}{23}=>-1\le\frac{P}{a}\le\frac{26}{23}\)

mà a>0 nên \(-2\le-a\le P\le\frac{13}{23}a\le\frac{26}{23}\)

kết hợp những TH zừa xét lại ta có

\(-2\le P\le\frac{26}{23}\)

Khách vãng lai đã xóa
IS
1 tháng 7 2020 lúc 16:50

làm tiếp nè , mình phải làm tách ra không sợ nó lag

\(P=-2\)khi zà chỉ khi 

\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=-\frac{1}{2}\\3x^2+xy+2y^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2x\\3x^2-2x^2+8x^2=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-2x\\x=\pm\frac{\sqrt{2}}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{3}\\y=\mp\frac{2\sqrt{2}}{3}\end{cases}}}\)

zậy MinP=-2 khi ....

+) MaxP nhé

\(P=\frac{26}{13}\)khi

\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=\frac{7}{4}\\3x^2+xy+2y^2=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}y\\3\left(\frac{7}{4}y\right)+\frac{7}{4}y^2+2y^2=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4}y\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{7}{3}\sqrt{\frac{2}{23}}\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}}}\)

zậy ....

Khách vãng lai đã xóa
pro
Xem chi tiết
Nguyễn Trần Minh Châu
5 tháng 5 2021 lúc 11:09

pro rồi thì bạn cần gì mình giải nhỉ

??

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 16:54

\(A=x-2y+3\Rightarrow x=A+2y-3\)

\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)

\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)

\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)

\(\Leftrightarrow-7A^2+42A-31\ge0\)

\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)

liên hoàng
Xem chi tiết
Quyền Phạm Đức
Xem chi tiết
Nguyễn Minh Ngân
Xem chi tiết
Người Vô Danh
Xem chi tiết