Phân tích đa thức thành nhân tử bằng cách tách hạng tử bậc nhất: 4x^2 - 4x - 15
Phân tích đa thức thành nhân tử bằng cách tách hạng tử bậc nhất: x^2 - 11x + 8
= [x2 - 2.x.\(\frac{11}{2}\) + \(\left(\frac{11}{2}\right)^2\)] - \(\frac{121}{4}\)+ 8 = (x - \(\frac{11}{2}\))2 - \(\frac{89}{4}\) = (x - \(\frac{11}{2}\))2 - \(\left(\frac{\sqrt{89}}{2}\right)^2\)
= \(\left(x-\frac{11}{2}-\frac{\sqrt{89}}{2}\right).\left(x-\frac{11}{2}+\frac{\sqrt{89}}{2}\right)\)= \(\left(x-\frac{11+\sqrt{89}}{2}\right).\left(x+\frac{\sqrt{89}-11}{2}\right)\)
Cho xin mẹo: cách phân tích đa thức thành nhân tử bằng phương pháp tách 1 hạng tử thành nhiều hạng tử đối với các đa thức có bậc ba trở lên
phương pháp này mình gọi là phương pháp nhẩm nghiệm:
- Nếu tổng tất cả các hệ số bằng o thì đa thức có 1 nghiệm là x=1 hay chứa thừa số là x-1
- Nếu tổng tất cả các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì đa thức có một nghiệm là x=-1 hay chứa thừa số là x+1
BT3: Phân tích các đa thức sau thành nhân tử bằng phương pháp cách tách hạng tử. a, x^3 + 4x^2 - 21x b, 5x^3 + 6x^2 + x c, x^3 - 7x + 6 d, 3x^3 + 2x - 5
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
bài 1: Phân tích đa thức sau thành nhân tử ( làm bằng 2 cách: nhóm các hạng tử, tách hạng tử )
a,4x2 - x - 5
b,x2 - 2x - 15
a: \(4x^2-x-5=\left(4x-5\right)\left(x+1\right)\)
b: \(x^2-2x-15=\left(x-5\right)\left(x+3\right)\)
Phân tích các đa thức sau thành nhân tử bằng phương pháp tách 1 hạng tử thành 2:
a)9x^2+6x-8
b)4x^2-4x-3
Giup mik vs mik cần gấp
Lời nói chẳng mất tiền mua. Lựa lời mà chửi cho vừa lòng nhau. Đã chửi, phải chửi thật đau. Chửi mà hiền quá còn lâu nó chừa. Chửi đúng , không được chửi bừa . Chửi cha mẹ nó , không thừa một ai . Khi chửi , chửi lớn mới oai. Chửi hay là phải chửi dài , chửi lâu . Chửi đi chửi lại mới ngầu. Chửi nhiều cho nó nhức đầu , đau tai. Chửi xong nhớ nói bái bai . Phóng nhanh kẻo bị ăn chai vào mồm.
\(a,9x^2+6x-8\)
\(=\left(3x\right)^2+2.3x+1-9\)
\(=\left(3x+1\right)^2-3^3\)
\(=\left(3x+1-3\right)\left(3x+1+3\right)=\left(3x-2\right)\left(3x+4\right)\)
\(b,4x^2-4x-3\)
\(=\left(2x\right)^2-2.2x+1-4\)
\(=\left(2x-1\right)^2-2^2\)
\(=\left(2x-1-2\right)\left(2x-1+2\right)=\left(2x-3\right)\left(2x+1\right)\)
Phân tích các đa thức sau thành nhân tử (Sử dụng phương pháp tách hạng tử)
\(x^3-4x^2+4x-1\)
ấn máy tính để tìm nghiệm rồi phân tích ra
\(x^3-4x^2+4x-1\)
\(=x^3-x^2-3x^2+3x+x-1\)
\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)
này đinh đức hùng không phân tích nữa à , cái đằng sau còn phân tích được nữa đấy
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 4x^3 - 13 x^2 + 9x - 18
b - x^3 - 6x^2 + 6x +1
c x^3 - 4x^2 - 8x + 8
a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)
b. \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)
c. \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)
Phân tích đa thức thành nhân tử bằng cách tách 1 hạng tử thành nhiều hạng tử:
x2 -10x+100
x2-10x+16=x2-8x-2x+16=(x2-8x)-(2x-16)=x(x-8)-2(x-8)=(x-8)(x-2)
Đa thức này không phân tích được đâu bạn
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
x^3 - 13x^2 + 9x - 18
x^3 - 4x^2 - 8x + 8