Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Vũ
Xem chi tiết
Grey.nnvd (07)
2 tháng 10 2023 lúc 22:10

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

I LOVE KOOKIE
Xem chi tiết
Quìn
9 tháng 4 2017 lúc 9:16

a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)

\(P=1-\dfrac{1}{56}\)

\(P=\dfrac{55}{56}\)

b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)

\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=3\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}\)

\(A=\dfrac{297}{100}\)

c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(B=1-\dfrac{1}{103}\)

\(B=\dfrac{102}{103}\)

d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)

\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}.\dfrac{102}{103}\)

\(C=\dfrac{170}{103}\)

e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)

\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}.\dfrac{104}{105}\)

\(D=\dfrac{26}{15}\)

I LOVE KOOKIE
Xem chi tiết
DanAlex
9 tháng 4 2017 lúc 8:24

a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)

=\(1-\frac{1}{56}=\frac{55}{56}\)

b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)

\(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)

=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)

=> \(A=\frac{99}{100}.3=\frac{297}{100}\)

c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)

=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)

e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)

=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)

=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)

=\(1-\frac{1}{105}=\frac{104}{105}\)

=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)

Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 21:10

a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)

b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)

c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)

d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

Kudo Shinichi AKIRA^_^
1 tháng 3 2022 lúc 21:10

đề bài là j

vuong thuy quynh
Xem chi tiết
Nguyễn Xuân Sáng
13 tháng 3 2016 lúc 16:12

a) \(=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{61.64}\)

\(=3\left(\frac{1}{1}-\frac{1}{64}\right)\)

\(=\frac{189}{64}\)

b) \(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)

\(=\frac{1}{1}-\frac{1}{25}\)

\(=\frac{24}{25}\)

c) Chưa học tới

Nguyễn Minh Tuyền
13 tháng 3 2016 lúc 16:24

b)1/1.5+1/5.9+1/9.13+...+1/21.25

=1/4.(4/1.5+4/5.9+4/9.13+4/21.25)

=1/4.(4-4/5+4/5-4/9+4/9-4/13+...+4/21-4/25)

=1/4.(4-4/25)

=1/4.(100/25-4/25)

=1/4.96/25

=24/25

Nguyen Dang Hai Dang
Xem chi tiết
Phạm Minh Châu
20 tháng 8 2023 lúc 20:21

\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)

⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)

Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.

Lâm Khánh Ly
Xem chi tiết
Mai Anh
3 tháng 2 2022 lúc 17:05

1.

`16 + (27 - 7.6 ) - (94 -7 - 27.99)`

`= 16+ 27 - 7.6 - 94 + 7 + 27.99`

`= 16 + 27(99 +1) - 7(6-1) - 94`

`= -78 + 27.100 - 7.5`

`= 2587`

2.

`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`

`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`

`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`

`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`

`3/2A = 1 - 1/100`

`3/2 A= 99/100`

`A= 99/100 : 3/2`

`A=33/50`

Vậy `A= 33/50`

Trần Đức Huy
3 tháng 2 2022 lúc 17:04

1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99

                                           =(27+27.99)+(27+7-94)+16

                                           =27.100-60+16

                                           =2700-44=2656

2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)

     =\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

     =\(1-\dfrac{1}{100}=\dfrac{99}{100}\)

Trần Tuấn Hoàng
3 tháng 2 2022 lúc 17:06

1) \(16+\left(27-7.6\right)-\left(94-7-27.99\right)\)

=\(16+27-7.6-94+7+27.99\)

=\(\left(27+27.99\right)+\left(-7.6+7\right)+\left(16-94\right)\)

=\(27\left(1+99\right)+7\left(-6+1\right)-78\)

=\(27.100-7.5-78=2700-35-78=2587\).

2) \(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)

\(A=\dfrac{2.3}{1.4.3}+\dfrac{2.3}{4.7.3}+\dfrac{2.3}{7.10.3}+...+\dfrac{2.3}{97.100.3}\)

\(A=\dfrac{2}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(A=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(A=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{100}\right)=\dfrac{2}{3}.\dfrac{99}{100}=\dfrac{33}{50}\)

củ lạc giòn tan
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Trần Minh Hoàng
10 tháng 1 2021 lúc 10:33

Đặt \(T=1.4+4.7+...+\left(3n-2\right)\left(3n+1\right)\).

Ta có: \(9T=1.4.\left[7-\left[-2\right]\right]+4.7.\left(10-1\right)+7.10.\left(13-4\right)+...+\left(3n-2\right).\left(3n+1\right).\left[\left(3n+4\right)-\left(3n-5\right)\right]=1.4.7-\left(-2\right).1.4+4.7.10-1.4.7+7.10.13-4.7.10+...+\left(3n-2\right)\left(3n+1\right)\left(3n+4\right)-\left(3n-5\right)\left(3n-2\right)\left(3n+1\right)=\left(3n-2\right)\left(3n+1\right)\left(3n+4\right)-\left(-2\right).1.4=9n\left(3n^2+3n-2\right)\Rightarrow T=n\left(3n^2+3n-2\right)\).