x + <x + 1> + < x + 2> + ... + 29 +30 = 30
Giait pt:
\(\frac{x-29}{30}+\frac{x-30}{29}=\frac{29}{x-30}+\frac{30}{x-29}\)
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
a. x(x-1)(x+1)(x+2)=24
b.\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
c.\(\dfrac{x-29}{30}+\dfrac{x-30}{29}=\dfrac{29}{x-30}+\dfrac{30}{x-29}\)
a.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(a=x^2+x-1\) , ta có pt:
\(\left(a+1\right)\left(a-1\right)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
*Với a = 5 ta được:
\(x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
*Với a = -5 ta được:
\(x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)
Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)
c)(ĐKXĐ: x khác 30;29)
\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)
\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)
\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)
\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)
\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)
\(\Leftrightarrow1741-59x=0\)
\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)
Vậy S={0;\(\dfrac{1741}{59}\);59}
b)(ĐKXĐ:x khác 2;3;4;5;6)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-6\right)\left(x-2\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow x^2-8x+12=32\)
\(\Leftrightarrow x^2-8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow x=-2\) or x=10(đều thỏa)
Vậy ...
Giải phương trình:
\(\frac{x-29}{30}\frac{x-30}{29}=\frac{29}{x-30}+\frac{30}{x-29}\)
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
mn giúp mk với ak
f(x)=x^2/1-2x+2 x^2 tính a=f(1/30)+f(2/30)+..+f(29/30
Giả sử cho biểu thức :
\(T\left(x\right)=\left(1+x^2\right)^{15}=a_0+a_1x+a_2x^2+a_3x^3+.....+a_{29}x^{29}+a_{30}x^{30}.\)
Tính giá trị của biểu thức:
\(H=-2a_1+2^2a_2-2^3a_3+2^4a_4-2^5a_5+...+2^{28}a_{28}-2^{29}a_{29}+2^{30}a_{30}\)
Ta có:
\(T\left(-2\right)=a_0-2a_1+2^2a_2-...-2^{29}a_{29}+2^{30}a_{30}=a_0+H=\left(1+4\right)^{15}\)
\(\Leftrightarrow1+H=5^{15}\)
\(\Leftrightarrow H=5^{15}-1\)
Tính nhanh :
(-30)x(-29)x(-28)x.... x (-1)x0 x 1 x 2 x.....x 29 x 30
( chú ý : có thể ra luôn kết quả )
trong phep tinh co so 0 nen h tren bang 0
kết quả bằng 0 vì bất kì số nào nhân với 0 cũng bằng 0
B= a x (a-1) x (a-2) x .................(a-29) x (a-30)
giá trị của a là
a.1
b.2
c.29
d.30
B phai co ket qua chu khong co ket qua lam sao ma biet a = ?
thieu de bn oi,bai nay de that nhug thieu de thi sao chia dc
Giả sử P(x) = (2 + x + 3x2)10 = a0 + a1x + a2x2 + ... + a29x29 + a30x30
Tính tổng S = a1 + a2 + ... + a30
Ta có : \(P\left(0\right)=a_0=2^{10}\)
\(P\left(1\right)=a_0+a_1+a_2+...+a_{30}=\left(2+1+3\right)^{10}=6^{10}\)
Suy ra : \(S=a_1+a_2+...+a_{30}=P\left(1\right)-P\left(0\right)=6^{10}-2^{10}\)
S=1 x 2+2 x 3+3 x 4+.......+28 x 29+29 x 30 =?