Cho tam giác ABC có góc B>C . Gọi AH là đường vuông góc kẻ từ A đến đường thẳng BC . Gọi M là trung điểm thuộc đoạn thẳng AH . So sánh MB và MC
Cho tam giác ABC có góc B lớn hơn góc C. AH là đường vuông góc kẻ từ A đến đường thẳng BC. M là 1 điểm thuộc đoạn thẳng AH. So sánh MB và MC
Tam giác ABC có góc B>góc C, gọi AH là đường vuông góc kẻ từ điểm A đến BC (H thuộc BC), M là điểm thuộc đoạn AH
a) So sánh: BH và CH
b) So sánh: MB và MC
c) Chứng minh rằng: AH< AB+AC:2
hung huyen ngu vai
Cho tam giác ABC có B > C Gọi AH là đường vuông góc kẻ từ điểm A đến đường thẳng BC. So sánh BH và HC
A. BH > HC
B. BH = HC
C. BH < HC
D. Không so sánh được
cho tam giác ABC có B>C. vẽ đường cao ah cua tam giác ABC (tức là AH vuông góc với BC và H thuộc BC). lấy điểm M bất kì trên đoạn thẳng AH. so sánh MB và MC
Cho ABC có Bˆ Cˆ .Gọi AH là đường vuông góc kẻ từ A đến BC
( H thuộc BC) và M là một điểm thuộc đoạn AH.
a)So sánh độ dài BH và CH
b) So sánh độ dài MB và MC
a) Xét ΔABC có Bˆ>CˆB^>C^
mà cạnh đối diện với góc B là AC
và cạnh đối diện với góc C là AB
nên AC>AB
hay AB<AC(Định lí 2 về quan hệ giữa cạnh và góc trong tam giác)
b) Xét ΔABC có AB<AC(cmt)
mà hình chiếu của AB trên BC là HB
và hình chiếu của AC trên BC là HC
nên HB<HC(định lí 2 về quan hệ giữa đường vuông góc, đường xiên và hình chiếu)
c) Xét ΔDBC có HB<HC(cmt)
mà hình chiếu của DB trên BC là HB
và hình chiếu của DC trên BC là HC
nên DB<DC(định lí 1 về quan hệ giữa đường vuông góc, đường xiên và hình chiếu)
Xét ΔDBC có DB<DC(cmt)
mà góc đối diện với DB là góc DCB
và góc đối diện với DC là góc DBC
nên DBCˆ>DCBˆDBC^>DCB^(định lí 1 về quan hệ giữa góc và cạnh trong tam giác)
cho tam giác ABC có AC > AB kẻ đường vuông góc AH từ A đến đường thẳng BC gọi D là điểm nằm giữa A và H a) so sánh độ dài các đoạn thẳng HC và HB b) so sánh các độ dài các đoạn thẳng DC và DB
a: Xét ΔABC có AC>AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC>HB
b: Xét ΔDBC có HB<HC
mà HB,HC lần lượt là hình chiếu của DB,DC trên BC
nên DB<DC
Cho tam giác ABC vuông ở A, góc C=1/2 góc B, kẻ AH vuông BC tại H. Trên tia HC lấy D sao cho HD=HB. Từ C kẻ đường thẳng CE vuông đường thẳng AD.
a) So sánh: HE2 và BC2-AD2/4
d) Gọi K là giao điểm của AH và CE, lấy I bất kì thuộc đoạn thẳng HE(I khác H, I khác E). CM: 3AC/2<IA+IK+IC
Cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH và đường trung tuyến AD (H,D thuộc BC)
a) Tính độ dài đoạn thẳng BC, AD
b) Chứng minh AH2 = HB.HC
c) Qua A kẻ đương thẳng d vuông góc với AD, qua B kẻ đường thẳng d' vuông góc với BA. Gọi M là giao điểm của d và d', E là hình chiếu của B trên AM. Chứng minh góc ABE = góc BAD và tam giác ABC đồng dạng với tam giác EMB
d) Gọi N là giao điểm của AD và MB, F là giao điểm của DM và AB. Chứng minh E, F, N thẳng hàng.
cho tam giác ABC có góc B > góc C. Gọi AH là đường cao. Kẻ từ A lên B,C; M thuộc AH
a) So sánh: BH và CH
b) So sánh: MB và MC
c) C/m:AH < (AB+AC)/2