Tìm x,y là các số nguyên tố sao cho \(x^2+3xy+y^2\)là số chính phương
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương
tìm x,y nguyên sao cho xy là số chính phương và x^2+xy+y^2 là số nguyên tố
2) tìm các số nguyên dương x,y sao cho :
a, | 2x - 3 | = 7
b, 3/2x = 7/10 - y/5
3) tìm số nguyên tố có 2 chữ số khác nhau dạng ab sao cho ba cũng là số nguyên tố và hiệu ab - ba là số chính phương.
M.n giúp mk bài này nha:
1. Có ... số có 4 chữ số sao cho khi nhân số đó với 360 ta dược số chính phương.
2. Cho các số nguyên tố x,y nguyên tố cùng nhau sao cho x.y = z2 . Chứng minh rằng x,y là các số chính phương
1. Tìm số nguyên tố p sao cho: x^2 + y^2 - 3xy = p-1
2. Tìm số tự nhiên m,n sao cho m^4 + 4n^4 là số nguyên tố.
(Mong các bạn cho mình xin được lời giải chi tiết)
Bài 1 : Tìm p sao cho p và p4+2 đều là số nguyên tố .
Bài 2 : TÌm các số tự nhiên n khác 0 sao cho x = 2n+2003 và y = 3n+2005 đều là số chính phương .
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
1.Tìm số nguyên a để a^4-a^3+2a^2 là số chính phương.
2.Cho a,b là các số nguyên tố lớn hơn 3. C/m a^2-b^2 chia hết cho 24.
3.Tìm số hữu tỉ x để số y=x^2+7x là số chính phương.
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS
Cho các số x, y nguyên dương, số nguyên tố p thỏa mãn 2p2 = x2 +y2. CMR 2p-x-y là số chính phương hoặc gấp 2 lần một số chính phương
tìm tất cả các số nguyên dương x;y sao cho các số: (x^2) + 3y và y^2 +3x đều là các ssoos chính phương