Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Đạt
Xem chi tiết
ngonhuminh
9 tháng 3 2018 lúc 22:55

\(\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne9;11;13;14\\\left(\dfrac{2}{x-14}-\dfrac{2}{3}\right)-\left(\dfrac{5}{x-13}-\dfrac{5}{4}\right)=\left(\dfrac{2}{x-9}-\dfrac{1}{4}\right)-\left(\dfrac{5}{x-11}-\dfrac{5}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow2\left(\dfrac{x-17}{3\left(x-14\right)}\right)-5\left(\dfrac{x-17}{4\left(x-13\right)}\right)=\left(\dfrac{x-17}{4\left(x-9\right)}\right)-5\left(\dfrac{x-17}{6\left(x-11\right)}\right)\)

\(\left(x-17\right)\left[\dfrac{2}{3\left(x-14\right)}-\dfrac{5}{4\left(x-13\right)}+\dfrac{5}{6\left(x-11\right)}-\dfrac{1}{4\left(x-9\right)}\right]=0\)

[..] vô nghiệm

x=17

Akai Haruma
10 tháng 3 2018 lúc 16:38

Lời giải:

Bài của bạn ngonhuminh cơ bản không đúng do không có cơ sở khẳng định biểu thức trong ngoặc vuông vô nghiệm.

ĐKXĐ: \(x\neq \left\{9;11;13;14\right\}\)

\(\frac{2}{x-14}-\frac{5}{x-13}=\frac{2}{x-9}-\frac{5}{x-11}\)

\(\Leftrightarrow 2\left(\frac{1}{x-14}-\frac{1}{x-9}\right)=5\left(\frac{1}{x-13}-\frac{1}{x-11}\right)\)

\(\Leftrightarrow \frac{10}{(x-14)(x-9)}=\frac{10}{(x-13)(x-11)}\)

\(\Rightarrow (x-14)(x-9)=(x-13)(x-11)\)

\(\Leftrightarrow x^2-23x+126=x^2-24x+143\)

\(\Leftrightarrow x-17=0\Leftrightarrow x=17\)

Thử lại thấy thỏa mãn.

Vậy \(x=17\)

ngonhuminh
10 tháng 3 2018 lúc 17:13

không vô nghiệm thì tìm đi

Tuyet Anh Lai
Xem chi tiết
YangSu
17 tháng 1 2023 lúc 19:50

\(1,\left(dk:x\ne0,-1,4\right)\)

\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)

\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)

\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)

\(\Leftrightarrow-x=-44\)

\(\Leftrightarrow x=44\left(tm\right)\)

\(2,\left(đk:x\ne4\right)\)

\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)

\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)

\(\Leftrightarrow28-12-6x-9+5x-20=0\)

\(\Leftrightarrow-x=13\)

\(\Leftrightarrow x=-13\left(tm\right)\)

Vương Minh Phong
Xem chi tiết
Hương Giang Vũ
25 tháng 3 2022 lúc 9:12

\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)

\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)

\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)

Vậy \(x\in\left\{22;23;24;...\right\}\)

 

Vương Minh Phong
25 tháng 3 2022 lúc 9:25

\(\dfrac{????????}{????????????}\)

★彡✿ทợท彡★
25 tháng 3 2022 lúc 9:30

a) \(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)

   \(\dfrac{11}{55}+\dfrac{10}{55}< \dfrac{x}{55}< \dfrac{22}{55}+\dfrac{1}{55}\)

   \(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{23}{55}\)

\(\Rightarrow\) \(x=22\)

b) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}< x\le\dfrac{13}{4}+\dfrac{14}{8}\)

  \(\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{1}{6}< x\le\dfrac{26}{8}+\dfrac{14}{8}\)

  \(1< x\le5\)

  \(\Rightarrow\) \(x\in\) {\(2;3;4;5\)}

c) \(\dfrac{1}{3}+\dfrac{5}{12}+\dfrac{-1}{13}< x< \dfrac{7}{5}+\dfrac{2}{10}+\dfrac{1}{2}\)

 Ko biết làm

d) \(\dfrac{79}{15}+\dfrac{7}{5}+\dfrac{-8}{3}\le x\le\dfrac{10}{3}+\dfrac{15}{4}+\dfrac{23}{12}\)

   \(\dfrac{79}{15}+\dfrac{21}{15}+\dfrac{-40}{15}\le x\le\dfrac{40}{12}+\dfrac{45}{12}+\dfrac{23}{12}\)

   \(4\le x\le9\)

   \(\Rightarrow\) \(x\in\) {\(4;5;6;7;8;9\)}

Nguyễn Thùy Linh
Xem chi tiết
Ngô Hải Nam
5 tháng 3 2023 lúc 20:13

\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)

\(< =>\dfrac{x+1}{59}+1+\dfrac{x+3}{57}+1+\dfrac{x+5}{55}+1=\dfrac{x+7}{53}+1+\dfrac{x+9}{51}+1+\dfrac{x+11}{49}+1\)

\(< =>\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}=\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)

\(< =>\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)=0\\ < =>x+60=0\\ < =>x=-60\)

 

 

Nguyễn thành Đạt
5 tháng 3 2023 lúc 20:24

Ta có : \(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)

\(\Leftrightarrow\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}+3\text{=}\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}+3\)

\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)

\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)

\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}\text{=}\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)

\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}-\dfrac{x+60}{53}-\dfrac{x+60}{51}-\dfrac{x-60}{49}\text{=}0\)

\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)\text{=}0\)

\(Do\) \(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\ne0\)

\(\Leftrightarrow\left(x+60\right)\text{=}0\)

\(x\text{=}-60\)

\(Vậy...\)

123 nhan
Xem chi tiết
TV Cuber
31 tháng 1 2023 lúc 10:03

`(x+19)/3 +(x+13)/5 = (x+7)/7 + (x+1)/9`

`<=> x/3 + 19/3 +x/5 +13/5 = x/7 +1 +x/9 +1/9`

`<=> x/3 +x/5 -x/7 -x/9 = 1+1/9 -19/3 -13/5`

`<=> x (1/3 +1/5 -1/7 -1/9) = -118/45`

`<=> x * 88/315 = -352/45`

`<=> x = -28`

Vậy `S={-28}`

Nguyễn Quang Vũ Anh
Xem chi tiết

Giải:

\(9-3\times\left(x-9\right)=6\) 

      \(3\times\left(x-9\right)=9-6\) 

      \(3\times\left(x-9\right)=3\) 

               \(x-9=3:3\) 

               \(x-9=1\) 

                     \(x=1+9\) 

                     \(x=10\) 

\(4+6\times\left(x+1\right)=70\) 

      \(6\times\left(x+1\right)=70-4\) 

      \(6\times\left(x+1\right)=66\) 

               \(x+1=66:6\) 

               \(x+1=11\) 

                     \(x=11-1\) 

                     \(x=10\) 

\(\dfrac{x}{13}+\dfrac{15}{26}=\dfrac{46}{52}\) 

         \(\dfrac{x}{13}=\dfrac{23}{26}-\dfrac{15}{26}\) 

         \(\dfrac{x}{13}=\dfrac{4}{13}\) 

\(\Rightarrow x=4\) 

\(\dfrac{11}{14}-\dfrac{3}{x}=\dfrac{5}{14}\) 

         \(\dfrac{3}{x}=\dfrac{11}{14}-\dfrac{5}{14}\) 

         \(\dfrac{3}{x}=\dfrac{3}{7}\) 

\(\Rightarrow x=7\) 

\(5\times\left(3+7\times x\right)=40\) 

         \(3+7\times x=40:5\) 

         \(3+7\times x=8\) 

                \(7\times x=8-3\) 

                \(7\times x=5\) 

                      \(x=5:7\) 

                      \(x=\dfrac{5}{7}\) 

\(x\times6+12:3=120\) 

       \(x\times6+4=120\) 

             \(x\times6=120-4\) 

             \(x\times6=116\) 

                   \(x=116:6\) 

                   \(x=\dfrac{58}{3}\) 

\(x\times3,7+x\times6,3=120\) 

    \(x\times\left(3,7+6,3\right)=120\) 

                  \(x\times10=120\) 

                           \(x=120:10\) 

                           \(x=12\) 

\(\left(15\times24-x\right):0,25=100:\dfrac{1}{4}\) 

      \(\left(360-x\right):0,25=400\) 

                   \(360-x=400.0,25\) 

                   \(360-x=100\) 

                             \(x=360-100\) 

                             \(x=260\) 

\(71+65\times4=\dfrac{x+140}{x}+260\) 

\(\left(x+140\right):x+260=71+260\) 

\(x:x+140:x+260=331\) 

    \(1+140:x+260=331\) 

                    \(140:x=331-1-260\) 

                    \(140:x=70\) 

                             \(x=140:70\) 

                             \(x=2\) 

\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=155\) 

                      \(10\times x+\left(1+4+7+...+28\right)=155\)

Số số hạng \(\left(1+4+7+...+28\right)\) :

         \(\left(28-1\right):3+1=10\) 

Tổng dãy \(\left(1+4+7+...+28\right)\) :

         \(\left(1+28\right).10:2=145\) 

\(\Rightarrow10\times x+145=155\) 

               \(10\times x=155-145\) 

               \(10\times x=10\) 

                       \(x=10:10\) 

                       \(x=1\) 

Đều theo cách lớp 5 nha em!

Nguyễn Nhi
Xem chi tiết
Linh Phương
12 tháng 8 2017 lúc 8:51

Mở đầu về phương trình

Mở đầu về phương trình

Mới vô
12 tháng 8 2017 lúc 8:56

2.

\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)

\(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)

\(\Rightarrow x>0\)

Vậy \(x>0\)

Nguyễn Ngọc Hương
Xem chi tiết
mai van chung
1 tháng 4 2017 lúc 20:14

(x-5)(x-9)>0\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\Leftrightarrow x>5\\x-9>0\Leftrightarrow x>9\end{matrix}\right.\)

Vậy x>9 thì (x-5)(x-9)>0

Lưu Hiền
1 tháng 4 2017 lúc 20:39

\(\dfrac{x-5}{x-8}>2\\ < =>x-5>2\left(x-8\right)\\ < =>x-5>2x-16\\ < =>-x>-11\\ < =>x< 11\)

vậy nghiệm của bpt là x<11

F.C
1 tháng 4 2017 lúc 20:57

a/

\(\dfrac{x+3}{2011}+\dfrac{x+1}{2013}\ge\dfrac{x+10}{2004}+\dfrac{x+13}{2001}\)

\(\Leftrightarrow\dfrac{x+2014-2011}{2011}+\dfrac{x+2014-2013}{2013}\ge\dfrac{x+2014-2004}{2004}+\dfrac{x+2014-2001}{2001}\)

\(\Leftrightarrow-1+\dfrac{x+2014}{2011}-1+\dfrac{x+2014}{2013}\ge-1+\dfrac{x+2014}{2004}-1+\dfrac{x+2014}{2001}\)

\(\Leftrightarrow\dfrac{x+2014}{2011}+\dfrac{x+2014}{2013}-2\ge\dfrac{x+2014}{2004}+\dfrac{x+2014}{2001}-2\)

\(\Leftrightarrow\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2013}\right)\ge\left(x+2014\right)\left(\dfrac{1}{2004}+\dfrac{1}{2001}\right)\)

\(\Leftrightarrow\dfrac{1}{2011}+\dfrac{1}{2013}>\dfrac{1}{2004}+\dfrac{1}{2001}\) hoặc \(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2013}\right)\ge\left(x+2014\right)\left(\dfrac{1}{2004}+\dfrac{1}{2001}\right)\)

(với mọi x>0) \(\Leftrightarrow x=2014\)

Học24
Xem chi tiết
thuongnguyen
8 tháng 1 2018 lúc 15:43

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....