Bài tập: Giải phương trình
2x2 - 4y + y2 - 4y + 6 = 0
Tìm tập S tất cả các giá trị thực của tham số m để tồn tại duy nhất cặp số (x;y) thỏa mãn log x 2 + y 2 + 2 4 x + 4 y - 6 + m 2 ≥ 1 và x 2 + y 2 + 2 x - 4 y + 1 = 0 .
A. S = - 5 ; 5
B. S = - 7 ; - 5 ; - 1 ; 5 ; 7
C. S = - 5 ; - 1 ; 1 ; 5
D. S = - 1 ; 1
Ta có
Cặp số x ; y = 2 ; 2 không thỏa mãn điều kiện .
Tập hợp các cặp số (x;y) thỏa mãn (1) là hình tròn C1(kể cả biên) tâm I1(2;2) bán kính R 1 = m .
Tập hợp các cặp số (x;y) thỏa mãn (2) là đường tròn C2 tâm I 2 - 1 ; 2 bán kính R 2 = 1 + 4 - 1 = 2 .
Để tồn tại duy nhất cặp số (x;y) thỏa mãn 2 điều kiện (1) và (2) Xảy ra 2 trường hợp sau:
TH1: C1; C2tiếp xúc ngoài
TH2: C1; C2 tiếp xúc trong và
Vậy S = - 1 ; 1 .
Chọn D.
Giải phương trình:
6x4 + 8x2 + 6 = (x4 + 2x2 + 1) (1 + 4y - y2)
Bài tập :
B1 Viết phương trình đường tròn (C1) có bán kính R1 = 1 , tiếp xúc với trục Ox và có tâm nằm trên đường thẳng denta : 3x - y +7 = 0
B2 Cho đường tròn (C) : x2 + y2 - 2x - 4y - 4 = 0 và đường thẳng (d) : 3x + 4y +4 = 0 . Chứng minh rằng (d) tiếp xúc với (C)
giải hệ phương trình
(1) x2 + 7 = y2 + 4y
(2) x2 + 3xy + 2y2 + x + y = 0
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
bài 2. viết phương trình tiếp tuyến của đường tròn (c):x2+y2−2x-4y−3=0 biết tiếp tuyến đi qua m(3;4).
Viết phương trình tiếp tuyến của đường tròn (C): x 2 + y 2 + 4 x + 4 y – 17 = 0 , biết tiếp tuyến song song với đường thẳng d: 3x – 4y - 18 = 0
A. 3x – 4y + 23=0 hoặc 3x – 4y – 27 = 0
B. 3x – 4y + 23= 0 hoặc 3x - 4y + 27 = 0
C. 3x - 4y – 23= 0 hoặc 3x – 4y + 27 = 0
D. 3x - 4y – 23 = 0 hoặc 3x – 4y – 27 = 0
Giải hệ phương trình: \(\left\{{}\begin{matrix}2xy+3x+4y+6=0\\x^2+4y^2+4x+12y-3=0\end{matrix}\right.\)
Hãy cho biết phương trình nào trong các phương trình sau đây là phương trình đường tròn:
2x2 + y2 – 8x + 2y – 1 = 0;
x2 + y2 + 2x – 4y – 4 = 0;
x2 + y2 – 2x – 6y + 20 = 0;
x2 + y2 + 6x + 2y + 10 = 0.
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.
Giải phương trình nghiệm nguyên : \(5x^4+10x^2+2y^6+4y^3-6=0\)
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)
\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;1\right)\)