cho tam giác ABC cân tại A có hai đường phân giác BM và CN cắt nhau tại I
a,Chứng minh tam giác AMN là tam giác cân
b,Biết góc BAC =40 độ tính góc BIC
Cho tam giác ABC cân tại A có góc BAC=80 độ, kẻ đường cao BE và CD cắt nhau tại O. a) Chứng minh: tam giác EBA= tam giác DCA và tính góc ABE, góc ABC. b) Chứng minh AO là tia phân giác của góc BAC. c) Gọi BM và CN lần lượt là các tia phân giác ngoài của góc ABC và góc ACB, F là giao điểm của BM và CN. Chứng minh 3 điểm A,O,F thẳng hàng
Cho tam giác AMN cân tại A. Trên cạnh đáy MN lấy hai điểm B và C sao cho MB = NC.
a) Chứng minh tam giác ABC cân.
b) Vẽ MH vuông góc với đường AB. Vẽ NK vuông góc với đường AC. Chứng minh ∆ M B H = ∆ N C K .
c) Các đường thẳng HM và KN cắt nhau tại O. Tam giác OMN là tam giác gì? Tại sao?
d) Khi B A C ^ = 60 ° và BM = CN = BC, tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC
e) Kẻ A D ⊥ B C ( D ∈ B C ) , biết rằng AB =10 cm, BC = 16 cm. Tính độ dài AD.
Cho tam giác ABC cân tại A, AB be hơn BC lấy hai điểm M và N sao cho BM = CN = AB
a, Chứng minh tam giác AMN cân
b, Tính các góc của tam giác AMN góc BAC bằng 120 độ .
c, Có khi nào tam giác AMN là tam giác vuông cân được hay không
Cho tam giác ABC cân tại A có AB<BC.Trên cạnh BC lấy hai điểm M và N sao cho BM=CN=AB.
a)Chứng minh rằng tam giác AMN cân.
b)Tính các góc của tam giác AMN khi góc BAC=120 độ.
Xét tam gia ABM va ANC co:
AB = AC(gt)
\(\widehat{B}\) =\(\widehat{C}\) (gt)
BM =NC (gt)
=> \(\Delta\) ABM =\(\Delta\) ANC (C.G.C)
Cho tam giác ABC có 3 góc nhọn. Các đường cao BM, CN cắt nhau tại H
a) Chứng minh rằng: tam giác ABM đồng dạng với tam giác ACN và AN.AB=AM.AC
b) Chứng minh rằng: tam giác AMN đồng dạng với tam giác ABC
c) Giả sử góc BAC = 60 độ . Chứng minh diện tích tam giác ABC gấp 4 lần diện tích tam giác AMN
Mọi người giúp mình với nha!!!
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
góc BAM chung
=>ΔABM đồng dạng với ΔACN
=>AM/AN=AB/AC
=>AM*AC=AN*AB và AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc MAN chung
=>ΔAMN đòng dạng với ΔABC
c: ΔAMN đồng dạng với ΔABC
=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4
=>S ABC=4*S AMN
Cho tam giác ABC cân tại A . Phân giác góc B và góc C cắt cạnh AC và AB lần lượt ở M và N . BM cắt CN ở I
a, chứng minh tam giác BCI cân
b,chứng minh AI là phân giác góc A
c, cm tam BNC và tam giác CMB
Cho tam giác abc có ab=ac=bc. Hai đường phân giác bm và cm cắt nhau tại i . Chứng minh rằng: a) ia=ib=ic b) góc aib=góc bic=góc cia
Cho tam giác ABC cân tại A ( góc A < 40 độ) có BM,CN là hai đường phân giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân
b) BE,CF là hai đường cao của tam giác ABC. Chứng minh EMNF là hình thang cân.
Cho tam giác ABC có Â = 60 độ. Các tia phân giác của góc B và C cắt nhau tại I, lần lượt cắt AC và AB tại D và E. Phân giác góc BIC cắt BC tại F
a) Tính số đo góc BIC
b) Chứng minh: ID=IE=IF
c) Chứng minh: Tam giác EDF là tam giác đều
d) Chứng minh: I là giao điểm của cả hai đường phân giác của hai tam giác ABC và DEF
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF