CMR: 1+3+5+...+n là số chính phương ( n lẻ )
CMR :A=1+3+5+7+.......+n là số chính phương (n lẻ)
cmr n là stn lẻ khi n^3+1 không phải số chính phương
Chứng minh rằng:
A = 1 + 3 + 5 + 7 + ... + n, là số chính phương
(n lẻ).
Lời giải:
Đặt $n=2k+1$
Số số hạng: $\frac{n-1}{2}+1=\frac{2k+1-1}{2}+1=k+1$
Tổng A là:
$A=\frac{(k+1)(2k+1+1)}{2}=\frac{2(k+1)^2}{2}=(k+1)^2$ là số chính phương (đpcm)
CMR:A=1+3+5+7+......+n là số chính phương(n lẻ)
Vì n lẻ => n = 2k + 1 (k \(\inℕ^∗\))
=> A = 1 + 3 + 5 + 7 + ... + (2k + 1)
= [(2k + 1 - 1) : 2 + 1] . (2k + 1 + 1) : 2
= (k + 1).2(k + 1): 2
= (k + 1)2
=> A là số chính phương
n lẻ => n có dạng 2k + 1 ( \(k\inℕ^∗\))
=> A = 1 + 3 + 5 + 7 + ... + n
= 1 + 3 + 5 + 7 + ... + ( 2k + 1 )
= \(\frac{\left[\left(2k+1\right)+1\right]\left[\frac{\left(2k+1\right)-1}{2}+1\right]}{2}\)
= \(\frac{\left(2k+2\right)\left(k+1\right)}{2}\)
= \(\frac{2\left(k+1\right)\left(k+1\right)}{2}\)
= \(\left(k+1\right)\left(k+1\right)\)
= \(\left(k+1\right)^2\)
=> A là số chính phương ( đpcm )
Số số hạng của \(A\)là :
\(\left(n-1\right)\div2+1=\frac{n+1}{2}\)( số số hạng )
Tổng của \(A\)là :
\(A=\frac{\frac{n+1}{2}.\left(n+1\right)}{2}=\frac{\left(n+1\right)^2}{4}=\left(\frac{n+1}{2}\right)^2\)là số chính phương với n lẻ .
( Vì n lẻ \(\Rightarrow\) n + 1 \(\Rightarrow\) n + 1 chẵn \(\Rightarrow\) n + 1 ⋮ 2 \(\Rightarrow\) n + 1 ⋮ 2 . Khi đó A sẽ là một bình phương của số nguyên )
Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Ta có : \(1+3+5+...+n\)
\(=\dfrac{\left(\dfrac{n-1}{2}+1\right)\cdot\left(n+1\right)}{2}=\dfrac{\left(n+1\right)^2}{4}=\left(\dfrac{n+1}{2}\right)^2\) là số chính phương.
https://olm.vn/hoi-dap/detail/10723222015.html vào link này nhé
CMR:
a) Tổng của 4 số chính phương lẻ có thể là 1 số chinh phương
b) Tổng của 5 số chính phương lẻ không thể là 1 số chính phương
số có dạng n^2+n+1 (n là số nguyên dương) có thể là số chính phương hay k ?
bài 2:một số chính phương có chữ số hàng chục là 3 cmr: chử số hàng đơn vị là 6
bài 3: chừng minh rằng tổng các bình phương của 2 số lẻ thì không chia hết cho 4,hiểu các bình phương của hai số lẻ thì chia hết cho 8
GIÚP MÌNH NHA LÀM ĐƯỢC BÀI NÀO THÌ LÀM
Cho n là số tự nhiên lẻ. CMR: Không có n để
P=n2016+1 là số chính phương