Cho \(\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\). Hãy nêu cách tính tổng hai phân số theo ví dụ bên
Quan sát hai phân số \(\frac{{ - 20}}{{30}}\) và \(\frac{4}{{ - 6}}\) và cho biết:
a) Chia cả tử và mẫu của phân số \(\frac{{ - 20}}{{30}}\) cho cùng số nguyên nào thì được phân số \(\frac{4}{{ - 6}}\)
b) Hai phân số đó có bằng nhau không?
c) Nêu ví dụ tương tự.
a) Chia cả tử và mẫu của phân số \(\frac{{ - 20}}{{30}}\) cho -5 thì được phân số \(\frac{4}{{ - 6}}\)
b) Hai phân số này bằng nhau, vì \[ - 20.( - 6) = {\rm{ }}4.30\]
c) Ví dụ: Phân số \(\frac{{ - 9}}{{12}}\) và phân số \(\frac{{ - 3}}{4}\)
Quan sát hai phân số \(\frac{3}{{ - 5}}\) và \(\frac{{ - 21}}{{35}}\) và cho biết:
a) Nhân cả tử và mẫu của phân số với cùng số nguyên nào thì được phân số \(\frac{{ - 21}}{{35}}\)
b) Hai phân số đó có bằng nhau không?
c) Nêu ví dụ tương tự.
a) Nhân cả tử và mẫu của phân số \(\frac{3}{{ - 5}}\) với số -7 thì được phân số \(\frac{{ - 21}}{{35}}\).
b) Hai phân số trên bằng nhau, vì \[3.35{\rm{ }} = {\rm{ }} - 5.( - 21)\]
c) Ví dụ: Phân số \(\frac{{ - 2}}{5}\) và phân số \(\frac{4}{{ - 10}}\) (Nhân cả tử và mẫu của phân số \(\frac{{ - 2}}{5}\) với -2 được phân số \(\frac{4}{{ - 10}}\)
cho biểu thức :
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
hãy tính giá trị của A theo hai cách :
cách 1 : trước hết, tính giá trị của từng biểu thức trong ngoặc
cách 2 :bỏ dấu ngoặc và nhóm các số hạng thích hợp
C1: dễ nên tự làm nhé
C2: \(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{2}+\frac{5}{2}\right)\)
\(=6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(=6-5-3+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)\)
\(=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)
Giúp mk với, mk đang cần gấp
Cho biểu thức:
A = \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right).\)
Hãy tính giá trị của A theo hai cách:
Cách 1: Trước hết, tính giá trị của từng biểu thức trong ngoặc
Cách 2: Bỏ dấu ngoặc rồi nhóm các số hạng thích hợp.
Phân số cuối cùng là \(\frac{5}{2}\)nha các bn
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(A=6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)
\(A=-2+\frac{-1}{2}\)
\(A=-\frac{5}{2}\)
Vậy A= -5/2
Mình không đọc kĩ, sorry bạn nhiều
A = (6 - 2/3 + 1/2) - (5 + 5/3 - 3/2) - (3 - 7/3 + 5/2)
A= ( 36/6 - 4/6 + 3/6) -( 30/6 + 10/6 - 9/6) - ( 18/6 - 14/6 + 15/6)
A= 35/6 - 31/6 -19/6
A= -5/2
Vậy A= - 5/2
Cho biểu thức :
A= ( 6 - \(\frac{2}{3}+\frac{1}{2}\)) - (5+\(\frac{5}{3}-\frac{3}{2}\)) - (3-\(\frac{7}{3}+\frac{5}{2}\))
Hãy tính giá trị của A theo hai cách :
Cách 1: Trước hết , tính giá trị của từng biểu thức trong ngoặc.
Cách 2: Bỏ dấu ngoặc rồi nhóm các số hạng thích hợp.
C1:A=(\(\frac{36-4+3}{6}-\frac{30+10-9}{6}-\frac{18-14+15}{6}=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=-\frac{5}{2}\)
C2:A=\(\left(6-5-3\right)+\left(\frac{-2}{3}-\frac{5}{3}+\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)=-2+0+-\frac{1}{2}=-\frac{5}{2}\)
Tính giá trị các biểu thức sau theo cách có dùng tính chất phép tính phân số:
a) \(\frac{2}{3} + \frac{{ - 2}}{5} + \frac{{ - 5}}{6} - \frac{{13}}{{10}};\)
b) \(\frac{{ - 3}}{7}.\frac{{ - 1}}{9} + \frac{7}{{ - 18}}.\frac{{ - 3}}{7} + \frac{5}{6}.\frac{{ - 3}}{7}\)
a)
\(\begin{array}{l}\frac{2}{3} + \frac{{ - 2}}{5} + \frac{{ - 5}}{6} - \frac{{13}}{{10}}\\ = \frac{2}{3} + \frac{{ - 5}}{6} + \frac{{ - 2}}{5} - \frac{{13}}{{10}}\\ = \left( {\frac{2}{3} + \frac{{ - 5}}{6}} \right) + \left( {\frac{{ - 2}}{5} - \frac{{13}}{{10}}} \right)\\ = \left( {\frac{4}{6} + \frac{{ - 5}}{6}} \right) + \left( {\frac{{ - 4}}{{10}} - \frac{{13}}{{10}}} \right)\\ = \frac{{ - 1}}{6} + \frac{{ - 17}}{{10}}\\ = \frac{{ - 5}}{{30}} + \frac{{ - 51}}{{30}}\\ = \frac{{ - 56}}{{30}}\\ = \frac{{ - 28}}{{15}}\end{array}\)
b)
\(\begin{array}{l}\frac{{ - 3}}{7}.\frac{{ - 1}}{9} + \frac{7}{{ - 18}}.\frac{{ - 3}}{7} + \frac{5}{6}.\frac{{ - 3}}{7}\\ = \frac{{ - 3}}{7}.\left( {\frac{{ - 1}}{9} + \frac{7}{{ - 18}} + \frac{5}{6}} \right)\\ = \frac{{ - 3}}{7}.\left( {\frac{{ - 2}}{{18}} + \frac{{ - 7}}{{18}} + \frac{{15}}{{18}}} \right)\\ = \frac{{ - 3}}{7}.\frac{{ 6}}{{18}}\\ = \frac{-1}{7}\end{array}\).
Cho dãy số sau:\(\frac{1}{6};\frac{2}{15};\frac{3}{40};\frac{4}{96};\frac{5}{204};...\)
Hãy tính tổng 10 phân số đầu tiên.
Lời giải:
Tổng 10 phân số đầu tiên là:
$\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+.....+\frac{10}{2679}$
$=\frac{1}{2.3}+\frac{2}{3.5}+\frac{3}{5.8}+\frac{5}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}+\frac{7}{23.30}+\frac{8}{30.38}+\frac{9}{38.47}+\frac{10}{47.57}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{57}$
$=\frac{1}{2}-\frac{1}{57}=\frac{55}{114}$
Tính tổng sau:
\(A=\frac{1}{\left[\sqrt[3]{2}\right]}+\frac{1}{\left[\sqrt[3]{3}\right]}+\frac{1}{\left[\sqrt[3]{4}\right]}+\frac{1}{\left[\sqrt[3]{5}\right]}+\frac{1}{\left[\sqrt[3]{6}\right]}+\frac{1}{\left[\sqrt[3]{7}\right]}+\frac{1}{\left[\sqrt[3]{9}\right]}+...+\frac{1}{\left[\sqrt[3]{2012^3-1}\right]}\)
(trong tổng trên không có các số dạng \(\frac{1}{\left[\sqrt[3]{n}\right]}\) với n là lập phương 1 số nguyên,ví dụ:1 và 8)
Ta có từ n3 + 1 đến (n + 1)3 - 1 có
(n + 1)3 - 1 - n3 - 1 + 1 = 3n2 + 3n số có phần nguyên bằng n
Áp dụng vào cái ban đầu ta có
\(=\frac{3.1^2+3.1}{1}+\frac{3.2^2+3.2}{2}+...+\frac{3.2011^2+3.2011}{2011}\)
= 3.1 + 3 + 3.2 + 3 + ...+ 3.2011 + 3
= 3.2011 + 3(1 + 2 +...+ 2011)
= 6075231
Cho biểu thức:
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
Hãy tính giá trị của A theo 2 cách:
Cách 1: Trước hết, tính giá trị của từng biểu thức trong ngoặc.
Cách 2: Bỏ dấu ngoặc rồi nhóm các số hạng thích hợp
Cách 1:
A = \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
A = \(\frac{35}{6}-\frac{31}{6}-\frac{19}{6}\)
A = \(\frac{-15}{6}=\frac{-5}{2}\)
Cách 2:
A = \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
A = \(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
A = \(6-5-3-\frac{2}{3}-\frac{5}{3}+\frac{7}{3}+\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\)
A = \(\left(6-5-3\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)+\left(\frac{1}{2}-\frac{3}{2}-\frac{5}{2}\right)\)
A = \(-2-0+\left(2-\frac{5}{2}\right)\)
A = \(-2+\left(2-\frac{5}{2}\right)\)
A = \(-2+2-\frac{5}{2}\)
A = \(0-\frac{5}{2}\)
A = \(\frac{-5}{2}\)