Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
Quỳnh Lisa
8 tháng 7 2021 lúc 14:32

áp dụng bất đẳng thức cô si cho:

*a+b≥\(2\sqrt{ab}\)

*b+c≥\(2\sqrt{bc}\)

*c+a≥\(2\sqrt{ca}\)

➩2(a+b+c)≥2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\))

➩ĐPCM

Viêt Thanh Nguyễn Hoàn...
8 tháng 7 2021 lúc 14:33

Ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\Leftrightarrow2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt[]{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

(luôn đúng với mọi a,b,c không âm)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

 

Thiều Ngọc Hiền Kiệt
Xem chi tiết
dmdaumoi
Xem chi tiết
Huyền
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Mac Hung
Xem chi tiết
TRAN XUAN TUNG
1 tháng 12 2019 lúc 23:40

Cho thêm điều kiện đi bạn VD a+b+c=3

Khách vãng lai đã xóa
slyn
Xem chi tiết
Bùi Việt Anh
21 tháng 3 2022 lúc 21:20

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

Bùi Việt Anh
21 tháng 3 2022 lúc 21:25

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

Kinh Luan Tran
Xem chi tiết
An Trịnh Hữu
Xem chi tiết
An Trịnh Hữu
17 tháng 7 2017 lúc 9:24

Ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

Cộng vế với vế 3 bất đẳng thức trên ta có:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\) xảy ra khi \(a=b=c\)

CHÚC BẠN HỌC TỐT........

online toán
17 tháng 7 2017 lúc 9:26

ta có : \(\left(a-b-c\right)^2\ge0\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca\ge0\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ab+2bc+2ca\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge2\left(ab+bc+ca\right)\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\forall a;b;c\)

vậy \(a^2+b^2+c^2\ge ab+bc+ca\) với mọi \(a;b;c\) (đpcm)

nguyễn thị mai hương
Xem chi tiết
Phạm Thị Thùy Linh
5 tháng 5 2019 lúc 13:32

\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(1\right)\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)\(\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( luôn đúng với mọi a , b , c )

Vậy Phương trình  \(\left(1\right)\)luôn đúng , hay : 

\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(đpcm\right)\)

ha nguyen
Xem chi tiết
blua
10 tháng 8 2023 lúc 21:28

tử vế phải là 3 hay 2 vậy bạn.