Tìm các số thực x,y thỏa mãn \(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)
Tìm tất cả các số thực thỏa mãn:
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)(*)
Ta có (*) <=> \(\left[\left(x^2+1\right)y-4x\right]^2+\sqrt{x^2-2x-y^2+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)y-4x=0\\x^2-2x-y^3+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}yx^2-4x+y=0\left(1\right)\\x^2-2x-y^3+9=0\left(2\right)\end{cases}}}\)
Nếu y=0 thì từ (1) => x=0, thay vào (2) không thỏa mãn
Nếu y\(\ne\)0 ta coi (1) và (2) là phương trình bậc hai ẩn x
Điều kiện để có nguyên x là: \(\hept{\begin{cases}\Delta_1=4-y^2\ge0\\\Delta_2=y^3-8\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}-2\le y\le2\\y\ge2\end{cases}\Leftrightarrow}y=2}\)
Thay y=2 vào hệ (1), (2) ta được \(\hept{\begin{cases}2x^2-4x+2=0\\x^2-2x+1=0\end{cases}\Leftrightarrow x=1}\)
Vậy x=1; y=2
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
Tìm các số x,y thỏa mãn: \(\left(x+1\right)^2+2xy+2y+y^2+\sqrt{2x-3y-3}=0\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Tìm các số thực \(x,y\) thỏa mãn :
a) \(2x+1+\left(1-2y\right)i=2-x+\left(3y-2\right)i\)
b) \(4x+3+\left(3y-2\right)i=y+1+\left(x-3\right)i\)
c) \(x+2y+\left(2x-y\right)i=2x+y+\left(x+2y\right)i\)
Cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm GTLN của biểu thức: \(M=xy+3y-4x^2-3\)
Tìm các số nguyên x;y thỏa mãn: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\left(1\right)\)