Cho hai số x,y>0 thoả mãn x+4y=5
Tìm GTNN \(B=\frac{1}{x}+\frac{1}{y^2}\)
Cho 2 số x, y > 0 thoả mãn x+y = 1.
Tìm GTNN của \(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
xin nhá xin nhá =))
Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x=y=1/2
Vậy ...
Cho x, y là hai số thực dương thoả mãn x + y = 1. Tìm GTNN của P = \(\frac{18}{x^2+y^2}+\frac{13}{xy}\)
Ta có:
\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)
\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)
\(=18.4+4.4=72+16=88\)
Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x, y là hai số dương thoả mãn x+y=2. Tìm GTNN của biểu thức
\(P=\frac{1}{4x^2+2}+\frac{1}{4y^2+2}+\frac{2}{xy}\)
\(P=\frac{1}{4x^2+2}+\frac{1}{4y^2+2}+\frac{1}{6xy}+\frac{1}{6xy}+\frac{5}{3xy}\)
\(P\ge\frac{16}{4x^2+4y^2+12xy+4}+\frac{5}{3xy}=\frac{16}{4\left(x+y\right)^2+4xy+4}+\frac{5}{3xy}\)
\(P\ge\frac{16}{4\left(x+y\right)^2+\left(x+y\right)^2+4}+\frac{5}{3.\frac{1}{4}\left(x+y\right)^2}=\frac{7}{3}\)
\(P_{min}=\frac{7}{3}\) khi \(x=y=1\)
Cho x,y>0 thoả mãn x+y=1. Tìm GTNN của biểu thức: P=\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Cho các số x,y thoả mãn điều kiện 0=<x,y=<1/2 . tìm max :
P = \(\frac{x}{5+4y^2}+\frac{y}{5+4x^2}\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
cho x,y >0 thoả mãn x+y+xy=1
tìm GTNN của \(\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}\)
Cho x,y>0 thoả mãn x+y\(\le\)1.Tìm GTNN của
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)
Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)
Suy ra \(P\ge10\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P = 10 khi x = y = 1/2
Suy ra P≥10
Dấu "=" xảy ra khi và chỉ khi {
x+y=1 |
x=y |
⇔x=y=12
Vậy Min P = 10 khi x = y = 1/2
Cho x,y,z>0 thoả mãn \(x+y+z\le3\). tìm GTNN của biểu thức
\(P=\frac{2}{x^3}+\frac{2}{y^3}+\frac{2}{z^3}+\frac{1}{x^2-xy+y^2}+\frac{1}{y^2-yz+z^2}+\frac{1}{z^2-zx+x^2}\)