CMR nếu : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) thì\(a^2=bc\)
a) CMR: Nếu\(\frac{a}{b}=\frac{c}{d}\)thì\(\frac{a}{b}=\frac{a+c}{b+d}\)
b) Cho\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\). CMR: a2 = bc
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=> \(ad=bc\)=> \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )
=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)
\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )
=>\(\frac{a}{b}=\frac{c}{a}\)=> \(a^2=bc\)( đpcm)
CMR nếu a^2=bc (với a#b và a#c) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Ta có: \(a^2=bc\)
=> \(bc-a^2=a^2-bc\)
<=> \(bc-a^2+ac-ab=a^2-bc+ac-ab\)
<=> \(\left(ac-a^2\right)+\left(bc-ab\right)=\left(a^2-ab\right)+\left(ac-bc\right)\)
<=> \(a\left(c-a\right)+b\left(c-a\right)=a\left(a-b\right)+c\left(a-b\right)\)
<=> \(\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\)
<=> \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)(đpcm)
CMR: Nếu \(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(a+a\right)\)\(ac-a^2+bc-ab==ac+a^2-bc-ac\)
\(\Rightarrow2a^2=2bc\)
\(\Rightarrow a^2=bc\)
đpcm
ai bt thì lm giúp tôi còn những ng ko bt đừng có xía vào, phiền lắm
Nếu nhân chéo lên ta được :
\(\left(a+b\right).\left(c-a\right)=\left(c+a\right).\left(a-b\right)\)
Sau khi nhân ra ta rút gọn được :
\(2a^2=2bc\)
\(\Leftrightarrow a^2=bc\)( điều phải chứng minh )
Cmr nếu \(\frac{c^2}{2}+ab-ac-bc=0\)thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b^2+c\right)^2}=\frac{a-c}{b-c}\)
Sửa để: CM: \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\) Điều kiện \(a;b\ne c\) \(a+b\ne c\)
\(\frac{c^2}{2}+ab-ac-bc=0\)
\(\Leftrightarrow c^2+2ab-2ac-2bc=0\)
\(\Leftrightarrow c^2=2c^2+2ab-2ac-2bc\)
\(\Leftrightarrow c^2=2\left(a-c\right)\left(b-c\right)\)
Lại có: \(a^2+\left(a-c\right)^2\)
\(=2a^2-2ac+c^2\)
\(=2a\left(a-c\right)+2\left(a-c\right)\left(b-c\right)\)
\(=2\left(a-c\right)\left(a+b-c\right)\)
Tương tự: \(b^2+\left(b-c\right)^2=2\left(b-c\right)\left(a+b-c\right)\)
Thay vô ta có:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b-c\right)}{2\left(b-c\right)\left(a+b-c\right)}=\frac{a-c}{b-c}\)
Cảm ơn bạn ạ, giáo viên ghi sai đề nên mình giải mãi không ra
CMR nếu a2=bc (với a\(\ne\)b và a\(\ne\)c)thì\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
CMR: Nếu \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\) thì \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
Đặt \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}=k\)
\(\Rightarrow\begin{cases}a=\frac{x^2-yz}{k}\\b=\frac{y^2-zx}{k}\\c=\frac{z^2-xy}{k}\end{cases}\)
Ta có:
\(\frac{a^2-bc}{x}=\frac{\left(\frac{x^2-yz}{k}\right)^2-\frac{y^2-zx}{k}.\frac{z^2-xy}{k}}{x}=\frac{\frac{x^4-2x^2yz+\left(yz\right)^2}{k^2}-\frac{\left(y^2-zx\right).\left(z^2-xy\right)}{k^2}}{x}\)
\(=\frac{\frac{\left(x^4-2x^2yz+y^2z^2\right)-\left(y^2z^2-z^3x-xy^3+x^2zy\right)}{k^2}}{x}\)
\(=\frac{\frac{x^4-2x^2yz+y^2z^2-y^2z^2+z^3x+xy^3-x^2zy}{k^2}}{x}=\frac{x^4++z^3x+xy^3-3x^2yz}{k^2}.\frac{1}{x}=\frac{x^3+y^3+z^3-3xyz}{k^2}\)
Tương tự thay a;b;c vào \(\frac{b^2-ca}{y};\frac{c^2-ab}{z}\) ta cũng được \(\frac{b^2-ca}{y}=\frac{c^2-ab}{z}=\frac{x^3+y^3+z^3-3xyz}{k^2}\)
Vậy \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)
CMR nếu
\(c^2+2\left(ab-ac-bc\right)=0,b\ne c,a+b\ne c\) thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Vì \(c^2+2\left(ab-ac-bc\right)=0\) nên :
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+\left(a-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}{b^2+\left(b-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}\)
\(=\frac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}=\frac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\) \(\left(b\ne c,a+b\ne0\right)\)
Cho hai số hữu tỉ\(\frac{a}{b}\)và\(\frac{c}{d}\)(b>0,d>0).CMR
a,Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad<bc
b,Nếu ad<bc thì\(\frac{a}{b}< \frac{c}{d}\)
CMR nếu \(^{a^2}\)=bc
thì \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)
có \(a^2=bc=>a.a=bc=>\frac{a}{c}=\frac{b}{a}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}=>đpcm\)
a2 = b.c => a.a = b.c = \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}\)điều cần minh chứng