Tổng 1/3 + 1/4 + 1/5 + ... + 1/10 bằng phân số a/b. Chứng minh rằng a chia hết cho 13.
tổng \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{10}\)bằng phân số \(\frac{a}{b}\)
chứng minh rằng tổng đó chia hết cho 13
ghi rõ cách làm nha
mình tick nah
Bài 1 Chứng minh rằng 17^5 + 24^4 - 13^21 chia hết cho 10
Bài 2 Cho A bằng { (1 + 2+ 3 + .. . + n ) - 7 } . Hỏi A có chia hết cho 10 không ?
Bài 3 Tìm chữ số tận cùng của 5^ n (n>1)
Bài 4 Chứng minh rằng
a Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b Trong 4 số tự nhiên liên tiếp có một số chia hết cho 4
c Trong năm số tự nhiên liên tiếp có một số chia hết cho 5
GIẢI HẾT DÙM MÌNH NHA, AI GIẢI HẾT MÌNH TICK CHO! GHI RÕ RA HẾT LUN NHA!
1/tính tổng: S1= 1+2+3+4+....+999
2/khi chia số tự nhiên a cho 36 ta đc số dư là 12 hỏi a có chia hết cho 4 ko? 9 ko?
3/ tìm tập hợp các số tự nhiên N vừa chia hết cho 2, vừa chia hết cho 5 và 953<n<984
4/từ 1 đến 1000 có bn số chia hết cho 5?
5/ tổng 1015+8 có chia hết cho 9 và 2 ko?
6/tổng 102010+14 có chia hết cho 3 và 2 ko?
7/ hiệu 102010 - 4 có chia hết cho 3 ko?
8/a/ chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b/ chứng minh rằng ab+ba chia hết cho 11
c/ chứng minh rằng aaa luôn chia hết cho 37
d/ chứng minh ab-ba chia hết cho 9 với a>b
9/ tìm số tự nhiên x,y:
(x-1).y=42
xy=33
(x-1)(y+1)=44
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
TA tính như sau :ta tính số số hạng trước -->(999-1):1+1=999(SSH)
=>Tổng của dãy trên là :(1+999)x999:2=499500
Bài 1 :Tổng \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\)\(\frac{1}{10}\)bằng phân số \(\frac{a}{b}\).Chứng tỏ rằng a chia hết cho 13
Bài 2 : Cho phân số tối giản \(\frac{a}{b}\)và\(\frac{a'}{b'}\)\(\left(a,b,a',b'\in Nsao\right)\)có tổng là một số tự nhiên n .Chứng tỏ rằng \(b=b'\)
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Tổng A = 1/3 + 1/4 + 1/5 + ..... + 1/10 = a/b . Chứng minh rằng A chia hết cho13
\(A=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.........+\frac{1}{13}\)
\(A=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(A=\left(\frac{10}{30}+\frac{3}{30}\right)+\left(\frac{9}{36}+\frac{4}{36}\right)+\left(\frac{8}{40}+\frac{5}{40}\right)+\left(\frac{7}{42}+\frac{6}{42}\right)\)
\(A=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
Chọn mẫu chung là 30.36.40.42
Gọi thừa số phụ của các phân số trên là \(k_1,k_2,k_3,k_4\)
Ta được:
\(\frac{a}{b}=\frac{11.k_1}{30.36.40.42}+\frac{11.k_2}{30.36.40.42}+\frac{11.k_3}{30.36.40.42}+\frac{11.k_4}{30.36.40.42}\)
\(\frac{a}{b}=\frac{11.k_1+11.k_2+11.k_3+11.k_4}{30.36.40.42}\)
\(\frac{a}{b}=\frac{11.\left(k_1+k_2+k_3+k_4\right)}{30.36.40.42}\)
Vì mẫu chung 30.36.40.42 không chứa thừa số nguyên tố 11 nên khi rút gọn phân số A thì a vẫn chứa thừa số nguyên tố 11.
Vậy a chia hết cho 11.
Tổng 1 + 1/2 + 1/3 + 1/4 + 1/5 + ....... + 1/17 + 1/18 bằng a/b với a/b là phân số tối giải. Chứng minh rằng b chia hết cho 2431?
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
1.Cho a,b thuộc N
A) chứng minh rằng: Nếu (10.a+3.b) chia hết cho & thì (4.b-3.a) chia hết cho
B)chứng minh rằng: Nếu(2.a+3.b) chia hết cho 13 thì (9.a +7.b) chia hết cho 13
2.Chứng minh:
a)3366+7755-2 chia hết cho 5
b)8102-2102 chia hết cho 10
Nhanh giúp mình với nhé