Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Thư
Xem chi tiết
Giỏi Toán 8
Xem chi tiết
Đỗ Tuệ Lâm
16 tháng 1 2022 lúc 19:35

c/m1:

gọi O là giao điểm của 2 đường chéo trong tứ giác , gọi tên của tứ giác đó là tứ giác  ABCD:

Trong Δ OAB có :

OA+OB>AB

Trong Δ OBC có :

OB+OC>BC 

Trong Δ OAD có :

OD+OA>AD

Trong Δ OCD có :

OC+OD>CD

Ta có 4 bất đẳng thức:

2OB+2OC+2OA+2OD<AB+BC+CD+DA

<=>2BD+2AC>1/2p

<=>BD+AC> 1/2p

Vậy tổng 2 đường chéo trong 1 tứ giác luôn lớn hơn nửa chu vi (đpcm)

p : là nửa chu vi

c/m2:

Vẫn sử dụng tứ giác ABCD 

do AC<p và BD<p

<=>AC+BD<2p

vậy tổng 2 đường chéo nhỏ hơn chu vi của tứ giác(đpcm)

Đào Hâm
Xem chi tiết
Lê Nguyên Hạo
15 tháng 8 2016 lúc 21:08

 Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó: 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 21:19

Bạn tham khảo ở đây : 

/hoi-dap/question/76098.html

Huyền Nguyễn Thu
Xem chi tiết
Trần Hà Nhung
Xem chi tiết
Hoang thi dieu linh
Xem chi tiết
Yuan Bing Yan _ Viên Băn...
20 tháng 8 2015 lúc 18:46

Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
 giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

OoO_Nhok_Lạnh_Lùng_OoO
24 tháng 8 2017 lúc 20:47

*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 

* giao của AC và BD là O. 

trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 

trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 

cổng 4 bất đẳng thức cùng chiề này lại ta có: 

2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 

<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

tự đặt tên vào hình nha :))

Xét tam giác AOB; tam giác BOC; tam giác COD; tam giác AOD ta có:

AO+BO>AB;BO+CO>BC;CO+DO>CD;AO+DO>AD

(áp dụng bất đẳng thức tam giác)

AO+BO+BO+CO+CO+DO+AO+DO>AB+BC+CD+AD( còn đâu tự làm )

2(AO+BO+CO+DO)>AB+BC+CD+AD

=

2.(AC+BD)>AB+BC+CD+AD

nguyễn thị tuyết nhi
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 7 2016 lúc 14:16

A B C D O

Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O

Theo bất đẳng thức tam giác, ta có : \(AO+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OD+OA>AD\)

\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)

\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)

Theo bất đẳng thức tam giác : \(AB+BC>AC\) ; \(AD+DC>AC\)\(AB+AD>BD\) ; 

\(BC+CD>BD\)

\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)

\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 11:16

Tứ giác.

Tứ giác.

Nữ hoàng sến súa là ta
Xem chi tiết
Lương Hữu Thành
15 tháng 6 2018 lúc 9:50

Dùng bất đẳng thức tam giác bạn ơi