A,1/9+2/3 x4 -3/5 :3/2
B,2,34x2,5+43,5
2.1
a) 3/4 + -4/5 - 1/2
b) ( 4 - 5/12 ) : 2 + 5/24
2.2 tìm x
4/7. x - 2/3 = 1/5
a. \(\dfrac{3}{4}\) + \(\dfrac{-4}{5}\) - \(\dfrac{1}{2}\) = \(\dfrac{-1}{20}\) - \(\dfrac{1}{2}\) = \(\dfrac{-11}{20}\)
b. (4 - \(\dfrac{5}{12}\) ): 2 + \(\dfrac{5}{24}\)
= \(\dfrac{43}{12}\) : 2 + \(\dfrac{5}{24}\)
= \(\dfrac{43}{24}\) + \(\dfrac{5}{24}\)
=\(\dfrac{48}{24}\) = 2
2.2
\(\dfrac{4}{7}\) .x - \(\dfrac{2}{3}\) = \(\dfrac{1}{5}\)
\(\dfrac{4}{7}\) x = \(\dfrac{1}{5}\) + \(\dfrac{2}{3}\)
\(\dfrac{4}{7}\) . x = \(\dfrac{13}{15}\)
x = \(\dfrac{91}{60}\)
2.1
\(a)\dfrac{3}{4}+\dfrac{-4}{5}-\dfrac{1}{2}\\ =\dfrac{3\times5}{4\times5}+\dfrac{-4\times4}{5\times4}-\dfrac{1\times10}{2\times10}\\ =\dfrac{15}{20}+\dfrac{-16}{20}-\dfrac{10}{20}\\ =\dfrac{15-16-10}{20}\\ =\dfrac{-11}{20}\)
\(b)\left(4-\dfrac{5}{12}\right):2+\dfrac{5}{24}\\ =\left(\dfrac{4\times12}{1\times12}-\dfrac{5}{12}\right):2+\dfrac{5}{24}\\ =\left(\dfrac{48}{12}-\dfrac{5}{12}\right):2+\dfrac{5}{24}\\ =\left(\dfrac{48-5}{12}\right):2+\dfrac{5}{24}\\ =\dfrac{43}{12}:2+\dfrac{5}{24}\\ =\dfrac{43}{12}\times\dfrac{1}{2}+\dfrac{5}{24}\\ =\dfrac{43}{24}+\dfrac{5}{24}\\ =\dfrac{43+5}{24}\\ =\dfrac{48}{24}\\ =2\)
\(2.2\\ \dfrac{4}{7}\times x-\dfrac{2}{3}=\dfrac{1}{5}\\ \dfrac{4}{7}\times x=\dfrac{1}{5}+\dfrac{2}{3}\\ \dfrac{4}{7}\times x=\dfrac{1\times3}{5\times3}+\dfrac{2\times5}{3\times5}\\ \dfrac{4}{7}\times x=\dfrac{3}{15}+\dfrac{10}{15}\\ \dfrac{4}{7}\times x=\dfrac{13}{15}\\ x=\dfrac{13}{15}:\dfrac{4}{7}\\ x=\dfrac{13}{15}\times\dfrac{7}{4}\\ x=\dfrac{91}{60}\)
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
a) 5/3+ -7/12 + (-1/2)2
b) 1/7 × 3/9 + -13/9 ×1/7 ×4/9
a) \(\dfrac{5}{3}+\left(-\dfrac{7}{13}\right)+\left(-\dfrac{1}{2}\right)\cdot2\)
\(=\dfrac{5}{3}-\dfrac{7}{13}-1\)
\(=\dfrac{65}{39}-\dfrac{21}{39}-\dfrac{39}{39}\)
\(=\dfrac{5}{39}\)
b) \(\dfrac{1}{7}\cdot\dfrac{3}{9}+\left(-\dfrac{13}{9}\right)\cdot\dfrac{1}{7}\cdot\dfrac{4}{9}\)
\(=\dfrac{1}{21}-\dfrac{52}{567}=-\dfrac{25}{567}\)
a) 5/3+ -7/12 + (-1/2)2
b) 1/7 × 3/9 + -13/9 ×1/7 ×4/9
a: =20/12-7/12+1/4
=13/12+3/12
=16/12
=4/3
b: =1/7(3/9-13/9*4/9)
=1/7*(3/9-52/81)
=-25/567
3/ TÍNH GIÁ TRỊBIỂU THỨC
a)(-3x2)3+ 4x–9 –27x6tại x = 2
b)2x3(x –8)+ x4(x + 7) –(x5+ 9x4–16x3+ x2+ x –1 )tại x = 10
Giải ra chi tiết giùm mình nha
a: Ta có: \(-\left(-3x^2\right)^3+4x-9-27x^6\)
\(=27x^6-27x^6+4x-9\)
=4x-9
=-1
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x :
a) A=(x+6)2+2(x-5)2-(x+2)2-2(x-3)2
b) B=(x-2)(x2+2x+4)-(x+2)(x2-2x+4)
c) C=x4+2x2-(x2-2x+3)(x2+2x+3)
Lời giải:
a.
$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$
$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$
$=4(2x+8)+2(-2)(2x-8)$
$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$
b.
$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$
c.
$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$
$=x^4+2x^2-(x^4+6x^2-4x^2)$
$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$
a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)
\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)
\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)
\(=34\)
b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-8-x^3-8\)
=-16
c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)
\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)
\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)
\(=-9\)
Giải các phương trình sau:
a, (9x2 - 4)(x + 1) = (3x +2)(x2 - 1)
b, (x - 1)2 - 1 + x2 = (1 - x)(x + 3)
c, (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)
d, x4 + x3 + x + 1 = 0
e, x3 - 7x + 6 = 0
f, x4 - 4x3 + 12x - 9 = 0
g, x5- 5x3 + 4x = 0
h, x4 - 4x3 + 3x2 + 4x - 4 = 0
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3