Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lại Trí Dũng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 3:52

Chọn C

log 9   x   +   log 9   x   +   4 = 26 (1) 

Đặt 

Phương trình (1) trở thành: 

Với t = 5 (thỏa mãn) => n = 42

Vậy tổng tất cả các chữ số của n là 4 + 2 = 6

Mai Nhật Lệ
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Trí Tiên亗
25 tháng 2 2020 lúc 15:25

Ta có : \(3y^2+1=4x^2\)

\(\Leftrightarrow3y^2=4x^2-1\)

\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)

Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)

TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )

TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)

Khi đo s: \(2x-1=\left(2k+1\right)^2\) 

\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )

Khách vãng lai đã xóa
Phùng Gia Bảo
25 tháng 2 2020 lúc 15:41

Tại sao 2x+1 và 2x-1 lại nguyên tố cùng nhau vậy bạn?

Khách vãng lai đã xóa
Trí Tiên亗
25 tháng 2 2020 lúc 15:51

Chứng minh nó nguyên tố :

Đặt \(\left(2x-1,2x+1\right)=d\)

Khi đó : \(\hept{\begin{cases}2x-1⋮d\\2x+1⋮d\end{cases}}\) \(\Rightarrow2⋮d\Rightarrow d\in\left\{1,2\right\}\) 

Mà : \(2x-1⋮̸2\)

Vì vậy : \(d=1\)

Khách vãng lai đã xóa
Nguyễn Xuân Bách
Xem chi tiết
Lưu Thiện Việt Cường
2 tháng 10 2016 lúc 11:10

toán lớp 6

Vy Trần Anh Thư
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 21:13

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x  = 1\) không là số vô tỉ.

(2) “Bình phương của mọi số thực đều không âm” đúng;

(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;

(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.

Hồng Ngọc
Xem chi tiết
nguyễn văn long vũ
Xem chi tiết