Tìm số nguyên n biết: n-1 là ước của n2 -2n+3
Bài 4: Tìm số các nguyên a, n biết:
a) a + 2 là ước của 7.
b) 2a + 1 là ước của 12.
c) n + 5 ⋮ n − 2.
d) 3n + 2 ⋮ 2n − 1.
e) n2 + 2n − 7 ⋮ n + 2.
Giúp em với, em cảm ơn.
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
d,
3n + 2 \(⋮\) 2n - 1
(3n + 2).2 ⋮ 2n -1
6n + 4 ⋮ 2n -1
(6n - 3) + 7 ⋮ 2n -1
3.(2n -1) + 7 ⋮ 2n -1
7 ⋮ 2n - 1
Ư(7) = { -7; -1; 1; 7}
lập bảng ta có:
2n - 1 | -7 | -1 | 1 | 7 |
n | -3 | 0 | 1 |
4 |
Theo bảng trên ta có:
n \(\in\) {-3; 0; 1; 4}
Bài 6. Tìm số nguyên n biết:
a) – 13 là bội của n – 2
b) 2n - 1 là ước của 3n + 2
c) n2 + 2n - 7 chia hết cho n + 2
d) n2+3n−5 là bội của n−2.
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.
Tìm số nguyên n, biết rằng
a) n - 3 là ước của 7
b) 2n - 1 là ước của 12 và 15 là bội của n.
1. Tìm các số nguyên n biết :
a) 2n+8 là ước của n+1
b)n + 1 là ước của n2 + n - 4
c) n + 1 là ước của n2 + 2n - 3
2. Tìm các số nguyên a thoả mãn: a3 + 2a2 - 5a + 6 = 0
click vào link sau để nói chuyện với thầy cô giáo chuyên ngành : xnxx.xom
P=n3/6 + n2/2 + n/3 + (2n+1)/(1-2n) với n là số nguyên. tìm tất cả các số n để giá trị của P là một số nguyên
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
Tìm số nguyên n biết rằng 2n - 1 là ước của 12 và 15 là bội của n
Tìm số nguyên n biết: a) – 5 là bội của n + 1
b) n là ước của 3n + 6
c) 2n + 5 là bội của n + 1
d) 3n + 1 chia hết cho n – 3
tìm số nguyên n biết
(n2 + 2n - 3 ): ( n - 1 )
mk cần gấp ạ
Ta có:
n2 + 2n - 3
= n2 + 3n - n - 3
= n(n + 3) - (n + 3)
= (n - 1)(n + 3)
Nên: n2 + 2n - 3 : n - 1
= (n - 1)(n + 3) : (n - 1)
= n + 3
Vậy với mọi x ∈ Z thì n2 + 2n - 3 : n - 1 luôn nguyên
ĐK : n nguyên và n khác 1
\(n^2+2n-3=n\left(n-1\right)+3\left(n-1\right)\\ =\left(n-1\right)\left(n+3\right)\)
Để n^2 + 2n - 3 chia hết cho n - 1
Thì : (n-1)(n+3) chia hết cho n - 1
Mà : (n-1)(n+3) luôn chia hết cho n - 1 với mọi n nguyên và n khác 1
Vậy n thuộc Z, n khác 1
tìm số nguyên n biết 2n-1 là ước của 12 và 15 là bội của n
toa méo biết
giúp đi mà