Cho f(x)=ax\(^3\)+bx\(^2\)-bx+a.Tìm a,b
biết f(1)=2;f(-1)=4
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
cho đa thức f(x)=ax5+bx3+bx2+a, biết f(2021)=2021. Hãy tính f (1/2021)
Tìm a, b, để f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6
Tìm a, b để f(x) = x3+ax2+bx-2 chia hết cho g(x) =
x2+1
Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12
Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)
\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)
Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)
\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)
Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)
\(\Rightarrow b=-2+3.2=4\)
Vậy a= -3; b = 4
Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)
Cho đa thức f(x)=ax^2+bx+c thỏa mãn: f(3)>2, f(1)<-1, f(-1)>0. Xác định dấu của a
\(\left\{{}\begin{matrix}9a+3b+c>2\\a+b+c< -1\\a-b+c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-a-b-c>1\\a-b+c>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-2a-2b-2c>1\\a-b+c>0\end{matrix}\right.\)
Cộng vế với vế:
\(8a>3\Rightarrow a>\dfrac{3}{8}>0\)
Vậy \(a>0\)
F(x)= ax+b ;a khác 0
biết F(1)= 0 ; F(2)= 4
G(x)= ax^2+bx+c ;a khác 0
biết G(1) = 0; G(-1)= 9 ; G(2)= 5
cho đa thức f(x)= ax^2+bx+ca khác 0
biết f(1)= f(-1)
CM :f(x)= f(-x)
no hiểu gì hết THIS IS HOW I DO NOT KNOW HOW TO APOLOGIZE OFFLINE
Cho đa thức: f(x)=ax\(^2\)+bx+c. Tìm a,b,c biết f(0)=4; f(1)=3, f(-1)=7
Vì f(0)=4 => c=4
=> f(x)=ax^2+bx+4
Vì f(1)=3 => a+b+4=3 => a+b=-1(1)
f(-1)=7 => a-b+4=7 => a-b =3 (2)
Từ (1),(2) => a = 1; b=-2
=> f(x)=x^2-2x+4
1.Tìm f(x)=x3+ax2+bx+c biết x thuộc [-1;1] thì /f(x) /≤1/4
2.Cho đa thức bậc 2: f(x) =ax22+bx+c thỏa mãn điều kiện:/f(-1)/≤1;/f(0)/≤1;/f(1)/≤1
CMR:/2ax+b/≤4 với mọi x thỏa mãn/x/≤1
cho f(x)=ax2+bx+c, biết f(0)=3; f(1)=0; f(-1)=1; Tìm a,b,c
f(0)=3 suy ra c=3 thay vào biểu thức ta có:
f(1)=a+b+3=0
f(-1)=a-b+3=1
suy ra
a+b = -3
a-b= -2
suy ra
a= -5/2
f(0)=3 suy ra c=3 thay vào biểu thức ta có:
f(1)=a+b+3=0
f(-1)=a-b+3=1
suy ra
a+b = -3
a-b= -2
suy ra
a= -5/2
b=-1/2
Cho f(x)=ax\(^3\)+bx\(^2\)-bx+a.Tìm a,b
biết f(1)=2;f(-1)=4