Nếu \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=a+b\sqrt{3}\)với a;b là các số hữu tỉ thì ab=....
\(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}\)=a+b\(\sqrt{3}\)
Hãy tính a.b (a nhân b)??
Ta có : \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=\frac{46}{2+\sqrt{28+10\sqrt{3}}}=\frac{46}{2+\sqrt{\left(\sqrt{3}+5\right)^2}}=\frac{46}{7+\sqrt{3}}\)
\(=\frac{46\left(7-\sqrt{3}\right)}{\left(7+\sqrt{3}\right)\left(7-\sqrt{3}\right)}=\frac{46\left(7-\sqrt{3}\right)}{46}=7-\sqrt{3}\)
Suy ra a = 7 , b = -1
=> a x b = -7
Thực hiện phép tính:
a)\(\frac{5}{a-\sqrt{11}}+\frac{1}{3\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
b)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
c)\(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\frac{6+2\sqrt{5}}{4}=\frac{32-6-2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}=\frac{14-\sqrt{5}}{2}\) \(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2=\left(\frac{9-2\sqrt{14}-9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)\left(\frac{9-2\sqrt{14}+9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)=\frac{-72\sqrt{14}}{\sqrt{7}-\sqrt{2}}\)
1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)
2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)
b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)
Bài 1:
Xét tử số:
\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)
\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)
Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)
\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)
Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$
Bài 2:
a)
$B=(\sqrt[3]{2}+1)^3(\sqrt[3]{2}-1)^3$
$=[(\sqrt[3]{2}+1)(\sqrt[3]{2}-1)]^3$
$=(\sqrt[3]{4}-1)^3$
$=3-3\sqrt[3]{16}+3\sqrt[3]{4}$
b)
Với $a,b$ đã cho ta đặt $\sqrt[3]{2}=x$. Khi đó:
\(a=\frac{6}{2x-2+\frac{2}{x}}=\frac{3x}{x^2-x+1}=\frac{3x(x+1)}{x^3+1}=\frac{3x(x+1)}{2+1}=x(x+1)\)
\(b=\frac{2}{2x+2+\frac{2}{x}}=\frac{x}{x^2+x+1}=\frac{x(x-1)}{x^3-1}=\frac{x(x-1)}{2-1}=x(x-1)\)
Khi đó:
$C=a^3b-ab^3=ab(a^2-b^2)=ab(a-b)(a+b)$
$=x^2(x^2-1)(2x)(2x^2)=4x^5(x^2-1)=8\sqrt[3]{4}(\sqrt[3]{4}-1)$
Bài 3:
Ta biết rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ với mọi $x\in\mathbb{R}$
Do đó:
$|x^2-x+1|-|x-2|=6$
$\Leftrightarrow x^2-x+1-|x-2|=6(*)$
Nếu $x\geq 2$ thì $(*)\Leftrightarrow x^2-x+1-(x-2)=6$
$\Leftrightarrow x^2-2x-3=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x=3$ (do $x\geq 2$)
Nếu $x< 2$ thì $(*)\Leftrightarrow x^2-x+1-(2-x)=6$
$\Leftrightarrow x^2-7=0$
$\Rightarrow x=-\sqrt{7}$ (do $x< 2$)
Vậy........
Chứng minh đẳng thức :
a) \(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
b) \(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
a) \(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)
Biến đổi vế trái :
VT = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\left|\sqrt{3}+1\right|}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\left|\sqrt{3}-1\right|}\)
\(=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2+\sqrt{3}+1}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{\sqrt{3}+3}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)\left(\sqrt{3}-3\right)+\sqrt{2}\left(2-\sqrt{3}\right)\left(\sqrt{3}+3\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{\sqrt{2}\left(6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3\right)}{9-3}=\frac{6\sqrt{2}}{6}=\sqrt{2}=VP\left(đpcm\right)\)
b) \(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Biến đổi vế trái :
VT = \(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\sqrt{5+\sqrt{21}}\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5+\sqrt{21}}\sqrt{5-\sqrt{21}}\)
\(=\sqrt{2}\sqrt{5+\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\sqrt{25-21}=\sqrt{10+2\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\sqrt{4}=\left|\sqrt{7}+\sqrt{3}\right|\left(\sqrt{7}-\sqrt{3}\right)2\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)2=\left(7-3\right)2=4.2=8=VP\left(đpcm\right)\)
Rút gọn
a) \(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
a) \(A=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}+\frac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}\)
\(=\frac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-\sqrt{18}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-\sqrt{18}}{6}\)
\(=\frac{12\sqrt{2}-2\sqrt{18}}{6}=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
1) Tính giá trị biểu thức :
a) A =\(\frac{\sqrt{15}+\sqrt{5}}{3\sqrt{3}+3}\) + \(\frac{\sqrt{42}-\sqrt{14}}{3\sqrt{6}-3\sqrt{2}}\)
b) \(\frac{\sqrt{9999}}{\sqrt{1111}}+\sqrt{28}.\sqrt{\frac{9}{7}}\)
c) \(\sqrt{50}.\sqrt{3,5-2\sqrt{3}}\)-\(\sqrt{75}\)
d)\(\frac{\sqrt{a^2-b^2}.\sqrt{a^2-ab}}{\sqrt{a^4}+a^3b}\)(Với điều kiện a>b>0)
Các bạn giúp mình với
Cảm ơn nhiều !!!
Tính
a) \(\frac{10}{\sqrt{5}}+\frac{8}{3 +\sqrt{5}}-\frac{\sqrt{15}-2\sqrt{5}}{\sqrt{3}-2}\)
b) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}-\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{5}-\sqrt{7}}\)
ai làm nhanh giúp em với
a) P=\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b) Q=\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
c) M=\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
d) N=\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
Tính:
a/ \(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{3}}\)
b/ \(\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{7}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
c/ \(\frac{\sqrt{14}-\sqrt{17}}{1-\sqrt{2}}\)
d/ \(\frac{3\sqrt{2}-3}{\sqrt{2}-1}\)
e/ \(\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\)