1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Bài 1: tính:
a) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{4,5}+\frac{2}{5}\sqrt{50}\right):\frac{4}{15}\sqrt{\frac{1}{8}}\)
Bài 2: Rút gọn:
A= \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Đk: (a ≥ 0, a ≠ 1)
B= \(\frac{a-3\sqrt{a}-4}{\sqrt{a}+1}\)
Bài 3: giải phương trình
a) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
b) \(\frac{x-1}{\sqrt{x-1}}=\sqrt{x-1}\)
Bài 4: tìm giá trị nhỏ nhất:
A=\(\frac{a-\sqrt{x}+3}{\sqrt{x}+2}\) (x ≥ 0)
1. Áp dụng quy tắc khai phương 1 thương, tính:
\(\frac{3\sqrt{128}}{\sqrt{2}}\)
2. Tính:
a. \(\left(\sqrt{32}-\sqrt{50}+\sqrt{8}\right):\sqrt{2}\)
b. \(\left(5\sqrt{48}-3\sqrt{27}+2\sqrt{12}\right):\sqrt{3}\)
c. \(\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
f. \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
1]
a) \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
b) \(\left(\frac{\sqrt{1}}{7}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}\right):\sqrt{7}\)
Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
bài 1: tìm x sao cho :
a) \(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)< 0
b) \(\frac{3}{\sqrt{x}-5}\)> 0
c) \(\frac{\sqrt{x}-1}{\sqrt{x}-2}\)< 1
d) \(\frac{\left(x+3\right)\sqrt{6-x}}{\sqrt{8-x}}\) ≥ 0
Bài 1: Chia hai căn bậc hai:
a) \(\frac{\sqrt{96}+\sqrt{300}-\sqrt{54}}{\sqrt{6}}\)
b) \(\frac{\sqrt{12+8x-x^2-x^3}}{\sqrt{3-x}}\)
Bài 2: Chứng minh rằng khi -3 <x<-1 thì:
\(\sqrt{x^2-x-2}:\sqrt{\frac{x-2}{x^2+4x+3}}=-\left(x+1\right)\sqrt{x+3}\)
Bài 3: Cho biểu thức A = \(\left(1+\frac{x}{\sqrt{x^2-1}}\right):\left(x+\sqrt{x^2-1}\right)\)
a) Rút gọn biểu thức
b) Tính giá trị của A tại x = \(\frac{\sqrt{8-2\sqrt{3}}}{2}\)
Bài 4: Giải phương trình:
a) \(\left(1+\sqrt{5}\right)x+\sqrt{45}=x+\sqrt{320}\)
b) \(6x-3\sqrt{3x-6}=12\)
CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
bài 1 rút gọn
a \(A=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
b\(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
c\(C=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) d\(D=\sqrt{2+\sqrt{3}}+\sqrt{14-5\sqrt{3}}+\sqrt{2}\)