Bài 1:
a) Ta có: \(\frac{12\sqrt{50}-8\sqrt{200}+7\sqrt{450}}{\sqrt{10}}\)
\(=\frac{12\cdot\sqrt{5}\cdot\sqrt{10}-8\cdot\sqrt{20}\cdot\sqrt{10}+7\cdot\sqrt{45}\cdot\sqrt{10}}{\sqrt{10}}\)
\(=\frac{\sqrt{10}\left(12\sqrt{5}-8\sqrt{20}+7\sqrt{45}\right)}{\sqrt{10}}\)
\(=12\sqrt{5}-8\sqrt{20}+7\sqrt{45}\)
\(=\sqrt{5}\left(12-16+21\right)\)
\(=17\sqrt{5}\)
b) Ta có: \(\frac{\frac{\sqrt{1}}{7}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}}{\sqrt{7}}\)
\(=\left(\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{3}{\sqrt{7}}\right)\cdot\frac{1}{\sqrt{7}}\)
\(=0\cdot\frac{1}{\sqrt{7}}=0\)