bài 1 : giải pt
a,\(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\)
b, \(\dfrac{6}{x-4}=\sqrt{2}\)
c,\(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)
bài 2 : tính
a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
b,\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
c, \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
Bài 1:
a/ \(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\) .
\(\Leftrightarrow\dfrac{2\left(x^2-2x+1\right)}{6}=1\)
\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{3}=1\)
\(\Leftrightarrow\left(x-1\right)^2=3\) \(\Rightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+1\\x=-\sqrt{3}+1\end{matrix}\right.\)
vậy tập nghiệm của phương trình S=\(\left\{1-\sqrt{3};\sqrt{3}+1\right\}\)
b/ ta có: \(\dfrac{6}{x-4}=\sqrt{2}\Leftrightarrow\sqrt{2}\left(x-4\right)=6\)
\(\Leftrightarrow x\sqrt{2}-4\sqrt{2}=6\)
\(\Leftrightarrow x\sqrt{2}=6+4\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{6+4\sqrt{2}}{2}=4+3\sqrt{2}\)
vậy \(x=4+3\sqrt{2}\) là nghiệm của phương trình
c/ \(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)
\(\Leftrightarrow\left(\sqrt{\dfrac{20}{2x^2-8x+8}}\right)^2=\left(\sqrt{5}\right)^2\)
\(\Leftrightarrow\dfrac{20}{2\left(x^2-4x+4\right)}=5\)
\(\Leftrightarrow\dfrac{10}{\left(x-2\right)^2}=\dfrac{10}{2}\)
\(\Rightarrow\left(x-2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)
vậy tập nghiệm của phương trình \(S=\left\{2+\sqrt{2};2-\sqrt{2}\right\}\)
Bài 2:
a/ đặt A= \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow A^2=3+\sqrt{5}+3-\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(\Leftrightarrow A^2=6-2\sqrt{9-5}\)
\(\Leftrightarrow A^2=6-2\sqrt{4}=6-4=2\)
\(\Rightarrow A=\sqrt{2}\)
\(\Rightarrow\)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\) = \(\sqrt{2}\)
\(\Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
b/ \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
\(=\dfrac{\sqrt{12}}{\sqrt{15}}+\dfrac{\sqrt{75}}{\sqrt{15}}+\dfrac{\sqrt{27}}{\sqrt{15}}=\sqrt{\dfrac{12}{15}}+\sqrt{\dfrac{75}{15}}+\sqrt{\dfrac{27}{15}}\)
\(=\dfrac{2\sqrt{5}}{5}+\sqrt{5}+\dfrac{3\sqrt{5}}{5}=\left(\dfrac{2\sqrt{5}}{5}+\dfrac{3\sqrt{5}}{5}\right)+\sqrt{5}\)
\(=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)
c/ \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(24\sqrt{5}-80\sqrt{2}+105\sqrt{2}\right):\sqrt{10}\)
\(=\left(24\sqrt{5}+25\sqrt{2}\right):\sqrt{10}=\dfrac{24\sqrt{5}}{\sqrt{10}}+\dfrac{25\sqrt{2}}{\sqrt{10}}\)
\(=12\sqrt{2}+5\sqrt{5}\)