a) cho x=\(\sqrt[3]{20+14\sqrt{2}}\)+\(\sqrt[3]{20-13\sqrt{2}}\). tính gt biểu thức: A=(x5-x4-5x3-34x2+34x-41)2016
b) cho a,b là số hữu tỉ thỏa mãn a2+b2=4-\(\left(\frac{ab+2}{a+b}\right)^2\).cm \(\sqrt{ab+2}\)là số hữu tỉ
MK CẦN GẤP. THANKS
Cho phương trình \(ax^2+bx+1=0\), với a,b là các số hữu tỉ. Tìm a,b biết x=\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình.
Cho \(A=a\sqrt{a}+\sqrt{ab}\)và \(B=b\sqrt{b}+\sqrt{ab}\)với a > 0 , b > 0
CMR nếu \(\sqrt{a}+\sqrt{b}\)và \(\sqrt{ab}\)đều là các số hữu tỉ thì \(A+B\)và \(A.B\)cũng là các số hữu tỉ
Help me !!!!
\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b-b}}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+b}\)
a) Rút gọn Q
b) Chứng minh rằng: Nếu \(Q=\frac{b+81}{b-81}\)
thì \(\frac{b}{a}\)
là 1 số nguyên chia hết cho 3
Chứng tỏ giá trị các biểu thức sau là số hữu tỉ
a) \(\frac{2}{\sqrt{7}-5}-\frac{2}{\sqrt{7}+5}\) b)\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
cho biểu thức
M=\(\frac{2\sqrt{a}+3\sqrt{a}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{a}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) tìm đkxd
b) rút gọn
c) chứng minh rằng :nếu\(M=\frac{b+81}{b-81}\)khi đó \(\frac{a}{b}\)là mottj số nguyên chia hết cho 3
các bn giúp mink với mink cần gấp
Tìm các số hữu tỉ a,b thỏa mãn \(\frac{5}{a+b\sqrt{2}}\)- \(\frac{4}{a-b\sqrt{2}}\)+18\(\sqrt{2}\)=3
Chứng tỏ giá trị của các biểu thức sau là số hữu tỷ:
A=\(\frac{2}{\sqrt{5}-3}-\frac{2}{\sqrt{5}+3}\)
B=\(\sqrt{\frac{18}{4+\sqrt{15}}}-\frac{3}{2+\sqrt{3}}-3\sqrt{5}\)
1, Rút gọn A = \(\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)
2, Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. Tìm a, b, c hữu tỉ để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)