Cho a (Z=8); b (Z=20). Viêt cấu hình e của ion a2- và b2+ và cho biết công thức hợp chất có thể tạo thành giữa a và b
Cho 3 số x,y,z thỏa mãn : x/2016 = y/2017 = z/2018
a CMR : (x-z)^2 = 8(x-y) (y-z)
b Cho biết x/24 + y/4 = z/2018 . Tính x,y,z ?
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
CHO X,Y,Z >0 THỎA MÃN: \(X^2+Y^2+Z^2=48\)
TÌM MAX: A = \(\sqrt{X^3+8}+\sqrt{Y^3+8}+\sqrt{Z^3+8}\)
\(A=\sqrt{x^3+8}+\sqrt{y^3+8}+\sqrt{z^3+8}\)
\(A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}\)
\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(x^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(y+2\right)\left(y^2-2x+4\right).\frac{1}{2}}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right).\frac{1}{2}}\)\(\sqrt{\frac{1}{2}}A=\sqrt{\left(x+2\right)\left(\frac{x^2}{2}-x+2\right)}+\sqrt{\left(y+2\right)\left(\frac{y^2}{2}-x+2\right)}+\sqrt{\left(z+2\right)\left(\frac{z^2}{2}-z+2\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\frac{1}{2}}A\le\frac{x+2+\frac{x^2}{2}-x+2+y+2+\frac{y^2}{2}-y+2+z+2+\frac{z^2}{2}-z+2}{2}=\frac{12+\frac{x^2+y^2+z^2}{2}}{2}=\frac{12+\frac{48}{2}}{2}=\frac{12+24}{2}=\frac{36}{2}=18\)
\(\Leftrightarrow A\le18:\sqrt{\frac{1}{2}}=18\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=\frac{x^2}{2}-x+2\\y+2=\frac{y^2}{2}-y+2\\z+2=\frac{z^2}{2}-z+2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=4x\\y^2=4y\\z^2=4z\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x-4\right)=0\\y\left(y-4\right)=0\\z\left(z-4\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\\z=4\end{cases}\left(v\text{ì}x,y,z>0\right)}}\)
Vậy \(A_{max}=18\sqrt{2}\Leftrightarrow x=y=z=4\)
Tham khảo nhé~
Cho A = xy(x+y) + yz(y+z) + zx(z+x) + 2xyz với x, y, z là các số nguyên lẻ. Chứng minh A chia hết cho 8
Cau 1 .Cho A = 3/4 + 8/9 + 15/16 +…+ 9999/10000
Chung to a lon hon 4/3
CAU 2 . A = x/x+y + y/y+z +x/x+z
Cho z , y z thuoc N* chung to A k thuoc N
Cau 2.la z/ x +z chu k phai x / x+z nha mk nham
Xin lỗi biết làm câu 1 thôi,thông cảm
Ta có A=:
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}\right)< |\frac{100}{101}\)(tự tính)
\(\Rightarrow C>98\left(đpcm\right)\)
Cho các nguyên tử sau: L (Z = 8, A = 16), D (Z = 9, A = 19), E (Z = 8, A = 18), G (Z = 7, A = 15). Trong các nguyên tử trên, các nguyên tử nào thuộc cùng một nguyên tố hóa học?
- Ta có:
+ L có Z = 8
+ D có Z = 9
+ E có Z = 8
+ G có Z = 7
=> Nguyên tử L và E thuộc cùng 1 nguyên tố hóa học vì có cùng số đơn vị điện tích hạt nhân (Z = 8)
1) So sánh: A và B biết: A=8^9+12/8^9+7 và B=8^10+4/8^10-1
2) Cho A=1/2.3/4.5/6.7/8. ... .79/80. Chứng minh rằng: A<1/9
3) Thay a,b bởi các chữ số thích hợp để: 0,ab.(a+b)=0,36
4) Tìm các bộ số x,y,z thỏa mãn: x,y,z là các số nguyên tố và 1/x+1/y+1/z=1/8
ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B
Thấy:k^2>k^2-1=(k-1)(k+1) 2^2>1.3; 4^2>3.5;…;〖80〗^2>79.81
〖Suy ra: A〗^2=(1^2.3^2….〖79〗^2)/(2^2.4^2….〖80〗^2 )<(1^2.3^2….〖79〗^2)/(1.3.3.5.5.7….79.81)=1/81
Vậy: A<1/9
Trần Trung Hiếu - Trường THCS Trung Châu - Đan Phượng - TP. Hà Nội
Cho x, y, z >0. CMR:
a) \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)
b) \(3\left(x^8+y^8+z^8\right)\ge\left(x^3+y^3+z^3\right)\left(x^5+y^5+z^5\right)\)
a, Ta có: \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)
\(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Ta CM: \(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Áp dụng bđt Cô si:
\(x^8+x^8+x^8+x^8+x^8+y^8+y^8+y^8\ge8x^5y^3\) (*)
Tương tự, \(5y^3+3x^3\ge8x^3y^5\) (**)
Từ (*), (**) \(\Rightarrowđpcm\)
Cho số phức z thỏa mãn z + 15 + z − 15 = 8 v à | z + 15 i | + | z − 15 i | = 8 . Tính z .
A. z = 4 34 17
B. z = 2 5 5
C. z = 4 5
D. z = 5 4
Phương pháp:
- Tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện thứ nhất.
- Tìm tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện thứ hai.
- Tìm giao hai tập hợp đó suy ra z và tính mô đun.
a,Cho a,b,c duong va \(a^2+b^2+c^2\)=3. Tim Min cua P= \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^2+3}}\)
b,Cho x,y,z>0 va x+y+z=6. C/m \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
a/
-Cauchy-Schwar
\(P=\sum\frac{a^4}{a\sqrt{b^2+3}}\ge\frac{\left(\sum a^2\right)^2}{\sum a\sqrt{b^2+3}}\)
Côsi: \(\sum a\sqrt{b^2+3}=\frac{1}{2}\sum2a.\sqrt{b^2+3}\le\frac{1}{2}.\sum\frac{\left(2a\right)^2+b^2+3}{2}=\frac{1}{4}.\left[5\left(a^2+b^2+c^2\right)+3.3\right]=6\)
\(\Rightarrow P\ge\frac{3^2}{6}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1.
b/
Côsi: \(8^x+8^x+64\ge3\sqrt[3]{8^x.8^x.64}=12.4^x\Rightarrow8^x\ge6.4^x-32\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-96\)
\(4^x+4^y+4^z\ge3\sqrt[3]{4^{x+y+z}}=3\sqrt[3]{4^6}=48\)
\(\Rightarrow-2\left(4^x+4^y+4^z\right)\le-96\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-2\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
Tìm a,b thuộc Z sao cho a×b=8.