Cho 100 số tự nhiên \(a_1;a_2;a_3;...;a_{100}\) thoả mãn điều kiện: \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\). Chứng minh rằng trong 100 số tự nhiên đó tồn tại hai số bằng nhau
Cho 100 số tự nhiên: a1;a2;a3;...;a100 sao cho:
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{100}}=\frac{101}{2}\)
CMR ít nhất hai trong 100 số tự nhiên đó bằng nhau
cho 100 số tự nhiên khác 0 \(a_1;a_2;...a_{100}\)thỏa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{100}}=\frac{51}{2}\)
CMR: có ít nhất 2 số trong 100 số đã cho bằng nhau
Cho \(a_1,a_2,a_3,...,a_{100}\)lần lượt là các số tự nhiên bất kì thỏa mãn rằng:
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{100}}=\frac{101}{2}\)
CMR trong 100 số này có ít nhất 2 số bằng nhau
Đây là toán lớp 7, giải giùm mình nha
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho 100 số tự nhiên a1,a2,...,a100 thỏa mãn điều kiện:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}=19\)
Chứng minh rằng trong 100 số tự nhiên, tồn tại hai số bằng nhau
Cho 25 số tự nhiên \(a_1,a_2,a_3,...,a_{25}\) thỏa điều kiện \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{25}}}=9\). Chứng minh rằng trong 25 số tự nhiên đó tồn tại 2 số bằng nhau.
Ta phản chứng rằng không tồn tại 2 số nào bằng nhau trong 25 số trên, đồng nghĩa với 25 số trên là phân biệt, ta sắp xếp chúng theo thứ tự $a_1<a_2<...<a_25$, có thể thấy rằng, bộ số $1,2,...25$ chính là bộ số mà giá trị của vế trái lớn nhất, nhưng giá trị lúc này có thể tính được là xấp xỉ 8,6<9 nên không thỏa mãn, các bộ số khác hiển nhiên cũng sẽ khiến vế trái nhỏ hơn 9, vậy không tồn tại bộ số nào thỏa mãn nếu chúng phân biệt, ta có điều phải chứng minh
Cho 2013 số tự nhiên : a1 ,a2 ,a3 , ... ,a2103 thỏa mãn \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2013}}\) =1007.Chứng minh rằng ít nhất 2 trong 100 số tự nhiên trên bằng nhau
Cho 100 số tự nhiên \(a_1;a_2;...;a_{100}\) thỏa mãn điều kiện :
\(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+.....+\dfrac{1}{\sqrt{a_{100}}}=19\)
Chứng minh rằng trong 100 số đã cho có 2 số bằng nhau
Giả sử 100 số tự nhiên đã cho đôi một khác nhau và \(a_1\ge1\),\(a_2\ge2\),..\(a_{100}\ge100\)( vì a là số tự nhiên)
\(\Rightarrow S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)
Ta có điều sau:\(\dfrac{1}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}+\sqrt{n}}< \dfrac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-\sqrt{n-1}\)
\(\Rightarrow S< 1+2.\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2.\left(10-1\right)=19\)( trái với giả thiết)
nên có ít nhất 2 trong 100 số đã cho bằng nhau .
Cho 25 số tự nhiên \(a_1,a_2,...,a_{25}\)thỏa mãn:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{25}}}=9\). Chứng minh rằng trong 25 số tự nhiên đó, tồn tại hai số bằng nhau.
giup cai? can gap! gap! gap!? | Yahoo Hỏi & Đáp
chứng minh = phản chứng . giả sử trong 25 số tự nhiên ko có 2 số nào bằng nhau . ko mất tính tổng quát , giả sử\(a_11,a_22,..,a_{25}25\)
thế thì
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{25}}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{25}}\)
ta lại có \(\frac{1}{\sqrt{25}}+..+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{1}}=\frac{1}{\sqrt{25+\sqrt{25}}}+\frac{1}{\sqrt{2+\sqrt{2}}}+1\)
\(< \frac{2}{\sqrt{24+\sqrt{24}}}+.+\frac{2}{\sqrt{2+\sqrt{2}}}+1\)
\(=2\left(\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{25}-\sqrt{1}\right)+1=9\left(2\right)\)
từ (1) zà 2 suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..+\frac{1}{\sqrt{a_{25}}}< 9\)trái zới giả thiết , suy ra ko tồn tại 2 số nào = nhau trong 25 số
cho 100 số tự nhiên \(a_1,a_2,a_3,...,a_{100}\) thỏa mãn : \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\)
CMR trong 100 số đó tồn tại 2 số bằng nhau .
Bạn xem lời giải tại đây:
cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn: \(\dfrac{1}{\sqrt{a_1}} \dfrac{1}{\sqrt{a_2}} ... \dfrac{1}{\sqrt{a_{100}... - Hoc24