Cho \(a_n=\dfrac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\) với n=1,2,3,..,2005
cm: \(a_1+a_2+...+a_n< \dfrac{2005}{2007}\)
Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
Bài 1 : chứng minh. \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>10\)
Chứng minh: 17 < \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{100}}\) < 18
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S =
Cho \(A=\dfrac{\sqrt{2}-\sqrt{1}}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+...+\dfrac{\sqrt{100}-\sqrt{99}}{99+100}\). CMR \(A< \dfrac{1}{2}\)
S=\(\dfrac{1}{1\sqrt{2}+2\sqrt{2}}+\dfrac{1}{2\sqrt{3}+3\sqrt{2}}+\dfrac{1}{3\sqrt{4}+4\sqrt{3}}+....+\dfrac{1}{99\sqrt{100}+100\sqrt{99}}\)
Rút gọn
A = \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+....+\dfrac{\sqrt{100}-\sqrt{99}}{100+99}\) <\(\dfrac{9}{20}\)