Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trâm

Rút gọn

A = \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

tthnew
8 tháng 7 2019 lúc 10:36

Em thử thôi chứ ko chắc đâu:((

Xét dạng tổng quát \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)

Suy ra \(A=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)

\(=1-\frac{\sqrt{100}}{100}=\frac{100-\sqrt{100}}{100}\)


Các câu hỏi tương tự
Tấn Phát
Xem chi tiết
Phương Phạm
Xem chi tiết
TOÁN
Xem chi tiết
PTTD
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết
Tiến Đỗ
Xem chi tiết
Huỳnh Thị Thu Uyên
Xem chi tiết
Ly Ly
Xem chi tiết