Cho \(c^2+2ab-2bc-2ca=0\) \(b\ne c;a+b\ne c\)
\(Cmr:\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Cho a,b,c\(\ne\)0.CMR: Nếu \(\left(a+b+c\right)^2=a^2+b^2+c^2\) thì \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=1\) và \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ca}=1\)
cho ba số a,b,c đôi một khác nhau thoả mãn (a+b+c)^2=a^2+b^2+c^2 tính giá trị P=2bc/a^2+2bc+2ca/b^2+2ca+2ab/c^2+2ab
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
-Ta có hằng đẳng thức: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(P=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}+2bc+2ca+2ab\)
\(=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}=\dfrac{2\left(b^3c^3+c^3a^3+a^3b^3\right)}{a^2b^2c^2}=\dfrac{2.\left(ab+bc+ca\right)\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=\dfrac{2.0.\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=0\)
cho a,b,c >0 và a+b+c<= 1 cmr 1/a^2+2bc + 1/b^2+2ca +1/c^2+2ab >= 9
Cho a,b,c > 0 và a+b+c<1
CMR: 1/(a^2+2bc) +1/b^2+2ca)+1/c^2+2ab>=9
Đặt \(m=a^2+bc\);\(n=b^2+2ca\);\(p=c^2+2ab\)
Lúc đó: \(m+n+p=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)^2< 1\)(vì a + b + c < 1 )
\(BĐT\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge9\)và m + n + p < 1 ; m,n,p > 0
Áp dụng BĐT Cô -si cho 3 số không âm:
\(m+n+p\ge3\sqrt[3]{mnp}\)
và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge3\sqrt[3]{\frac{1}{mnp}}\)
\(\Rightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)
Mà m + n + p < 1 nên \(\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)
hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge9\)
Cho \(a,b,c\ne0\); \(a+b\ne c\); \(b+c\ne a\)thỏa mãn \(\frac{a^2+b^2-c^2}{2ab}-\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}=1.\)
Chứng minh rằng \(a+b+c=0.\)
Cho 1/a + 1/b +1/c=0. Đặt A=(4a^2-bc)/(a^2+2bc), B=(4b^2-ca)/(2ca+b^2), C=(4c^2-ab)/(c^2+2ab). CMR:A.B.C=1
Cho a,b,c thỏa 2ab+2bc+2ca=0 tính M = \(\frac{bc}{8a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
Cho a,b>0 thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).Tìm GTNN của
A=\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^3+2bc+c^3}+\sqrt{c^3+2ca+a^3}\)