với a,b,c≥0 thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).Tìm GTNN của
Q=\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+c^2}+\sqrt{3c^2+2ca+3a^2}\)
Cho các số thực a, b, c không âm thỏa \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Tìm GTNN của \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Cho \(a;b;c\ge0\) thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Các bạn giúp mình với.
Giúp mình bài này với ạ :))
Cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức P = \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3a^2+2ca+3a^2}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Tìm GTLN của B= \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ac+3a^2}\)
Biết a,b,c >=0 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)3
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)
Cho 3 số thực dương a, b, c thõa mãn a + b + c = 1. Tìm GTLN của biểu thức
\(A=\sqrt{2ab+2b} + \sqrt{2bc+2c} + \sqrt{2ca+2a}\)
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)