Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\)
Chứng minh rằng : \(\left(SAC\right)\perp\left(SBD\right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\).. Tính góc giữa hai mặt phẳng (SBD) và (ABCD) ?
- Xác định góc \(\beta\) giữa hai mặt phẳng (SBD) và (ABCD) :
\(\left\{{}\begin{matrix}BD\perp AO\\BD\perp SO\left(BD\perp\left(SAC\right)\right)\end{matrix}\right.\)
\(\Rightarrow\left[\overline{\left(SBD\right),\left(ABCD\right)}\right]=\widehat{SOA}=\beta\)
- Tính góc \(\beta\) :
Trong tam giác vuông SOA, ta có :
\(\tan\beta=\dfrac{SA}{OA}=2\Rightarrow\beta=arc\tan2\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\). Tính góc giữa SC và mp (SAB) ?
- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)
\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)
- Tính góc \(\alpha\) :
Trong tam giác vuông \(SBC\), ta có :
\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)
Cho hình chóp S.ABCD có \(SA\perp\left(ABCD\right)\), đáy ABCD là hình vuông cạnh 2a, SA= \(2a\sqrt{3}\) .
1. Chứng minh \(\left(SAC\right)\perp\left(SBD\right)\)
2. Gọi I là trung điểm của AD, mặt phẳng (P) qua I và vuông góc với SD. Xác định và tính thiết diện của hình chóp cắt bởi mặt phẳng (P).
Help me!!!
1: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
=>(SAC) vuông góc (SBD)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\). Biết rằng \(SA\perp mp\left(ABCD\right)\) , gọi M là hình chiếu vuông góc của \(A\) lên cạnh \(SD\) .
Giả sử rằng \(AB=2.AD=2.DC=2.a\) , độ dài cạnh \(SA=2a\)
Tính khoảng cách từ điểm \(M\) đến \(mp\left(SBC\right)\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ
Em cám ơn nhiều ạ!
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $B$, $BA=BC=a$, $AD=2a$. Cạnh bên $SA$ vuông góc với mặt đáy và $SA=a\sqrt{2}$.
a) (1 điểm) Chứng minh $\left( SAB \right) \perp \left( SAD \right)$.
b) (1 điểm) Tính góc giữa đường thẳng $SC$ và mặt phẳng $\left( SAB \right)$.
c) (1 điểm) Gọi $H$ là hình chiếu vuông góc của $A$ lên $SB$. Tính khoảng cách từ $H$ đến mặt phẳng $\left( SCD \right)$.
a) Ta có {AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD){AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD).
b) Ta có {BC⊥ABBC⊥SA⇒BC⊥(SAB){BC⊥ABBC⊥SA⇒BC⊥(SAB).
Suy ra góc giữa SCSC và (SAB)(SAB) là góc ˆCSBCSB^.
Xét tam giác SABSAB vuông tại AA có SB=√AB2+SA2=a√3SB=AB2+SA2=a3. tanˆCSB=CBSB=aa√3=1√3⇒ˆCSB=30∘tanCSB^=CBSB=aa3=13⇒CSB^=30∘.
Vậy ˆ(SC,(SAB))=30∘(SC,(SAB))^=30∘
c) Gọi MMlà trung điểm ADAD.
Suy ra ABCMABCM là hình vuông và CM=AB=aCM=AB=a.
Suy ra CM=12ADCM=12AD nên ΔACDΔACD vuông tại CC hay AC⊥CDAC⊥CD.
Ta có {CD⊥ACCD⊥SA⇒CD⊥(SAC){CD⊥ACCD⊥SA⇒CD⊥(SAC).
Kẻ AK⊥SC (K∈SC)AK⊥SC (K∈SC)
⇒AK⊥(SCD)⇒d(A,(SCD))=AK⇒AK⊥(SCD)⇒d(A,(SCD))=AK.
AC=√AB2+BC2=a√2AC=AB2+BC2=a2.
Do đó d(A,(SCD))=AK=SA.AC√SA2+AC2=ad(A,(SCD))=AK=SA.ACSA2+AC2=a. (∗)(∗)
Trong (ABCD)(ABCD), gọi {E}=AB∩CD{E}=AB∩CD.
Ta có ⎧⎨⎩BC//ADBC=12AD{BC//ADBC=12AD nên BCBC là đường trung bình của ΔEADΔEAD.
⇒SB⇒SB là đường trung tuyến của ΔSAEΔSAE. (1)(1)
Mặt khác, tam giác ΔSAEΔSAE vuông tại AA có chiều cao AHAH cho ta SH.SB=SA2 ⇒ SHSB=SA2SB2=23SH.SB=SA2 ⇒ SHSB=SA2SB2=23 (2)(2)
Từ (1)(1) và (2)(2) suy ra HH là trọng tâm tam giác ΔSAEΔSAE.
Trong (SAE)(SAE), gọi {L}=AH∩SE⇒⎧⎨⎩AH∩(SCD)={L}LHLA=13{L}=AH∩SE⇒{AH∩(SCD)={L}LHLA=13.
⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗)⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗).
Từ (∗)(∗) và (∗∗)(∗∗) suy ra d(H,(SCD))=a3d(H,(SCD))=a3.
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) ,\(SA=a\) và vuông góc với đáy \(\left(ABCD\right)\) .Gọi \(M\) là trung điểm của \(BC\).Tính cosin của góc giữa hai mặt phẳng \(\left(SMD\right)\) và \(\left(ABCD\right)\).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và \(SA\perp\left(ABCD\right)\)
a) Chứng minh \(BD\perp SC\)
b) Chứng minh \(\left(SAB\right)\perp\left(SBC\right)\)
c) Cho \(SA=\dfrac{a\sqrt{6}}{3}\). Tính góc giữa SC và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D. Biết AB=2a, AD=DC=a. Cạnh bên SA vuông góc với đáy và \(SA=a\sqrt{2}\). CHọn khẳng định sai?
A: \(\widehat{\left(SBC\right);\left(ABCD\right)}=45^0\)
B: \(\widehat{\left(SDC\right);\left(BCD\right)}=60^0\)
C: Giao tuyến của (SAB) với (SCD) song song AB
D: \(\left(SBC\right)\perp\left(SAC\right)\)
B là khẳng định sai
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(CD=\left(SCD\right)\cap\left(BCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SDC) và (BCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{2}\Rightarrow\widehat{SDA}\approx54^044'\)
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA=a\sqrt{2}$. Các mặt phẳng $\left( SAB \right)$ và $\left( SAD \right)$ cùng vuông góc với mặt phẳng $\left( ABCD \right)$. Gọi $N$ là trung điểm cạnh $CD$.
a. Chứng minh rằng $BC\bot \left( SAB \right)$ và $\left( SAC \right)\bot \left( SBD \right)$.
b. Tính khoảng cách giữa hai đường thẳng $AN$ và $SC$ theo $a$.