Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 8:37

Vectơ trong không gian, Quan hệ vuông góc

- Xác định góc \(\beta\) giữa hai mặt phẳng (SBD) và (ABCD) :

\(\left\{{}\begin{matrix}BD\perp AO\\BD\perp SO\left(BD\perp\left(SAC\right)\right)\end{matrix}\right.\)

\(\Rightarrow\left[\overline{\left(SBD\right),\left(ABCD\right)}\right]=\widehat{SOA}=\beta\)

- Tính góc \(\beta\) :

Trong tam giác vuông SOA, ta có :

\(\tan\beta=\dfrac{SA}{OA}=2\Rightarrow\beta=arc\tan2\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 8:40

Vectơ trong không gian, Quan hệ vuông góc

- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)

\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)

- Tính góc \(\alpha\) :

Trong tam giác vuông \(SBC\), ta có :

\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)

Cao Hạ Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 20:23

1: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SAC) vuông góc (SBD)

Phạm Kim Oanh
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Hoang Hai Nam
27 tháng 4 2022 lúc 10:54

0

Phạm Thanh Thu
30 tháng 4 2022 lúc 22:04

 

a) Ta có {AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD){AB⊥ADAB⊥SA⇒AB⊥(SAD)⇒(SAB)⊥(SAD).

b) Ta có {BC⊥ABBC⊥SA⇒BC⊥(SAB){BC⊥ABBC⊥SA⇒BC⊥(SAB).

Suy ra góc giữa SCSC và (SAB)(SAB) là góc ˆCSBCSB^.

Xét tam giác SABSAB vuông tại AA có SB=√AB2+SA2=a√3SB=AB2+SA2=a3. tanˆCSB=CBSB=aa√3=1√3⇒ˆCSB=30∘tan⁡CSB^=CBSB=aa3=13⇒CSB^=30∘.

Vậy ˆ(SC,(SAB))=30∘(SC,(SAB))^=30∘

c) Gọi MMlà trung điểm ADAD.

Suy ra ABCMABCM là hình vuông và CM=AB=aCM=AB=a.

Suy ra CM=12ADCM=12AD nên ΔACDΔACD vuông tại CC hay AC⊥CDAC⊥CD.

Ta có {CD⊥ACCD⊥SA⇒CD⊥(SAC){CD⊥ACCD⊥SA⇒CD⊥(SAC).

Kẻ AK⊥SC (K∈SC)AK⊥SC (K∈SC)

⇒AK⊥(SCD)⇒d(A,(SCD))=AK⇒AK⊥(SCD)⇒d(A,(SCD))=AK.

AC=√AB2+BC2=a√2AC=AB2+BC2=a2.

Do đó d(A,(SCD))=AK=SA.AC√SA2+AC2=ad(A,(SCD))=AK=SA.ACSA2+AC2=a. (∗)(∗)

Trong (ABCD)(ABCD), gọi {E}=AB∩CD{E}=AB∩CD.

Ta có ⎧⎨⎩BC//ADBC=12AD{BC//ADBC=12AD nên BCBC là đường trung bình của ΔEADΔEAD.

⇒SB⇒SB là đường trung tuyến của ΔSAEΔSAE. (1)(1)

Mặt khác, tam giác ΔSAEΔSAE vuông tại AA có chiều cao AHAH cho ta SH.SB=SA2 ⇒ SHSB=SA2SB2=23SH.SB=SA2 ⇒ SHSB=SA2SB2=23 (2)(2)

Từ (1)(1) và (2)(2) suy ra HH là trọng tâm tam giác ΔSAEΔSAE.

Trong (SAE)(SAE), gọi {L}=AH∩SE⇒⎧⎨⎩AH∩(SCD)={L}LHLA=13{L}=AH∩SE⇒{AH∩(SCD)={L}LHLA=13.

⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗)⇒d(H,(SCD))d(A,(SCD))=LHLA=13 (∗∗).

Từ (∗)(∗) và (∗∗)(∗∗) suy ra d(H,(SCD))=a3d(H,(SCD))=a3.

Vũ Quang Huy
29 tháng 3 2023 lúc 20:23

mu

Phan Quỳnh Gia
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 9:52

Vectơ trong không gian, Quan hệ vuông góc

Nguyễn Lê Phước Thịnh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2023 lúc 15:11

B là khẳng định sai

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(CD=\left(SCD\right)\cap\left(BCD\right)\)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SDC) và (BCD)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{2}\Rightarrow\widehat{SDA}\approx54^044'\)

Thầy Cao Đô
Xem chi tiết
Hoang Hai Nam
27 tháng 4 2022 lúc 10:54

0

Nguyễn Thị Thu Thảo
4 tháng 5 2022 lúc 16:19

loading...  

Phạm Lê Ngọc Mai
4 tháng 5 2022 lúc 17:30

loading...  loading...