Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kiều anh nguyễn thị
Xem chi tiết

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(AE\cdot AC=AB\cdot AF\)

Truc Vo
Xem chi tiết
Thieu Gia Ho Hoang
4 tháng 2 2016 lúc 15:51

minh chua hok toi lop 7

Dương Đức Hiệp
4 tháng 2 2016 lúc 15:52

chu vi là :

13*12=260

Truc Vo
4 tháng 2 2016 lúc 15:55

Sai r bn j đó ơi

william
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 18:55

Kẻ đường cao BH (H thuộc AC)

Do góc A nhọn \(\Rightarrow\) H nằm giữa A và C

Ta có: \(S_{ABC}=\dfrac{1}{2}BH.AC\Leftrightarrow\dfrac{2}{5}bc=\dfrac{1}{2}BH.b\)

\(\Rightarrow BH=\dfrac{4c}{5}\)

Áp dụng Pitago cho tam giác vuông ABH:

\(AH^2=AB^2-BH^2=c^2-\left(\dfrac{4c}{5}\right)^2=\dfrac{9c^2}{25}\Rightarrow AH=\dfrac{3c}{5}\)

\(\Rightarrow CH=AC-AH=b-\dfrac{3c}{5}\)

Pitago tam giác vuông BCH:

\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(\dfrac{4c}{5}\right)^2+\left(b-\dfrac{3c}{5}\right)^2}=\sqrt{b^2-\dfrac{6}{5}bc+c^2}\)

Nguyễn Việt Lâm
7 tháng 7 2021 lúc 18:55

undefined

Phạm Hồng Khánh Lnh
Xem chi tiết
Phạm Hồng Khánh Lnh
Xem chi tiết
Phạm Hồng Khánh Lnh
Xem chi tiết
Ngọc Linh
Xem chi tiết
Phạm Tuấn
Xem chi tiết
Nguyen Thi Lan Anh
Xem chi tiết
Võ Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 13:18

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có

HB=HC(ΔAHB=ΔAHC)

\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)

nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)

mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)

nên \(\widehat{EHC}=\widehat{FHC}\)

mà tia HC nằm giữa hai tia HE,HF

nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)