cho tam giác ABC ( AB khác AC ) Trung trực BC cắt phân giác của góc A tại O . Kẻ OE vuông góc AB ; OF vuông góc AC
a) chứng minh BE =CF
b) EF giao BC tại M ; EF giao Ax tại I chứng minh M trung điểm BC
cho tam giác ABC ( AB khác AC ) Trung trực BC cắt phân giác của góc A tại O . Kẻ OE vuông góc AB ; OF vuông góc AC
a) chứng minh BE =CF
b) EF giao BC tại M ; EF giao Ax tại I chứng minh M trung điểm BC
Cho tam giác ABC (AB khác AC). Đường trung trực của BC cắt tia phân giác Ax của góc A ở điểm O. Kẻ OE, OF theo thứ tự vuông góc với AB, AC.
a) Cm: BE = CF.
b) Kẻ EF cắt BC tại M và cắt tia Ax tại I. Cm M là trung điểm của cạnh BC.
c) Cm: .
a, +) Xét \(\Delta OAE\) và \(\Delta OAF\) có:
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
OA là cạnh chung
\(\Rightarrow\Delta OAE=\Delta OAF\) (cạnh huyền, góc nhọn)
=> OE = OF và AE = À
+) Xét \(\Delta OPB\) và \(\Delta OPC\) có:
BP = PC (gt)
\(\widehat{BPO}=\widehat{CPO}=90^o\) (vì OP là trung trực của BC)
OP là cạnh chung
\(\Rightarrow\Delta OPB=\Delta OPC\left(c.g.c\right)\)
=> OB = OC
+) Xét \(\Delta BOE\) và \(\Delta COF\) có:
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
OB = OC (cmt)
OE = OF (cmt)
\(\Rightarrow\Delta BOE=\Delta COF\) (cạnh huyền, cạnh góc vuông)
=> BE = CF (đpcm)
b, Kẻ BD // AC (D \(\in\) EF)
\(\Rightarrow\widehat{BDM}=\widehat{MFC};\widehat{MBD}=\widehat{MCF}\) (so le trong)
Vì \(\Delta AEF\) cân (AE = AF) => \(\hept{\begin{cases}\widehat{BDE}=\widehat{AFE}\\\widehat{BED}=\widehat{AFE}\end{cases}\Rightarrow\widehat{BDE}=\widehat{BED}}\) => \(\Delta BED\) cân => BE = BD = CF (vì BE = CF)
Xét \(\Delta MBD\) và \(\Delta MCF\) có:
\(\widehat{MBD}=\widehat{MCF}\)
BD = CF (cmt)
\(\widehat{BDM}=\widehat{MFC}\)
\(\Rightarrow\Delta MBD=\Delta MCF\) (g.c.g)
=> MB = MC
=> M là trung điểm của BC (đpcm)
c, Xét \(\Delta AEI\)và \(\Delta AFI\) có:
AE = AF
góc A1 = góc A2
AI là cạnh chung
\(\Rightarrow\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> góc AIE = góc ÀI
Mà góc AIE và góc AIF kề bù => \(\widehat{AIE}=\widehat{AIF}=90^o\Rightarrow AO⊥EF\) tại I
Áp dụng định lý Py-ta-go vào các tam giác vuông:
\(\Delta IAE\) có \(\widehat{I}=90^o\Rightarrow IA^2+IE^2=AE^2\left(1\right)\)
\(\Delta IAF\) có \(\widehat{I}=90^o\Rightarrow IA^2+IF^2=AF^2\left(2\right)\)
\(\Delta IOE\) có \(\widehat{I}=90^o\Rightarrow IE^2+IO^2=EO^2\left(3\right)\)
\(\Delta IOF\) có \(\widehat{I}=90^o\Rightarrow IF^2+IO^2=OF^2\left(4\right)\)
Cộng (1),(2),(3),(4) vế với vế ta được:
\(2\left(IA^2+IE^2+IO^2+IF^2\right)=\left(AE^2+EO^2\right)+\left(AF^2+OF^2\right)\)
\(\Delta AEO\)vuông ở E nên \(AE^2+EO^2=AO^2\) (5)
\(\Delta AFO\)vuông ở F nên \(AF^2+OF^2=AO^2\) (6)
Từ (5) và (6) => \(2\left(IA^2+IE^2+IF^2+IO^2\right)=AO^2+AO^2=2AO^2\) hay \(IA^2+IE^2+IO^2+IF^2=AO^2\) (đpcm)
VẼ OP cho đúng chỗ nhé mình vẽ hơi sai và qua câu b thì xóa OP mà vẽ M vào nhé
bài này bạn làm dài thế
cho tam giác ABC. các tia phân giác của các góc B và C cắt nhau tại O. kẻ oe, of, og theo thứ tự vuông góc với các cạch AC, AB, BC. tia OA cắt BC tại D. CMR góc BOD=COGcho tam giác ABC. các tia phân giác của các góc B và C cắt nhau tại O. kẻ oe, of, og theo thứ tự vuông góc với các cạch AC, AB, BC. tia OA cắt BC tại D. CMR góc BOD=COG
1. Cho tam giác ABC ( AB khác AC). M là trung điểm của Bc, đường trung trực của cạnh BC cắt tia phân giác Ax của góc A tại O, cắt AC tại N, từ N kẻ đường thẳng vuông góc với AO cắt AB tại G. Gọi E, F lần lượt Là chân các đường vuông góc hạ từ O xuống AB, AC.
a,Cm tam giác AGO= ANO
b, Cmr GN song song EF
c, Các đường thẳng EF, BC, ON đồng quy
cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt trung trực của BC tại I. Kẻ IH vuông góc vói AB tại H và IK vuông góc với AC tại K. CMR:BH=CK
Câu 4: Cho tam giác ABC vuông tại A(AB < AC) phân giác góc B cắt AC tại D .Kẻ DE vuông góc BC tại E. a/Chứng minh tam giác ABD = tam giác EBD b/Chứng minh BD là đường trung trực của đoạn thẳng AB. c/ Chứng minh: AB + AC > BC + DF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE; DA=DE
=>BD là trung trực của AE
Cho tam giác ABC, AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với AB tại H, IK vuông góc với AC tại K. C/m: BH = CK
Cho tam giác ABC có AB <AC đường trung trực Dx của cạnh BC cắt tia phân giác của góc BAC tại O Hạ OE vuông góc với AB ,OF vuông góc với AC . Chứng minh:
a,BE=CF
b,3 điểm E,D,F thẳng hàng
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.