Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2018 lúc 2:10

pham minh nhat
Xem chi tiết
Xinzhao Boy
Xem chi tiết
Xinzhao Boy
12 tháng 1 2021 lúc 15:01
Mn giải giúp em với ạ
Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2019 lúc 2:39

shiro
Xem chi tiết
Đức Bùi
24 tháng 12 2022 lúc 20:32

Cho góc nhọn xOy. Trên tia Ox lấy điểm A và C sao cho OA < OC, trên tia Oy lấy điểm B và D sao cho OA = OB ; OC = OD. Gọi E là giao điểm của AD và BC. a) Chứng minh: AD = BC. b) Chứng minh: ∆EAC = ∆EBD. c) Chứng minh: OE là tia phân giác của góc xOy. (ảnh 1)

a) Chứng minh: AD = BC.

Xét ∆OAD và ∆OBC có:

OA = OB (gt);

ˆAODAOD^ chung;

OD = OC (gt)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng)

b) Chứng minh: ∆EAC = ∆EBD.

Vì ∆OAD = ∆OBC (câu a)

Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)

Mà ˆA1+ˆA2=180oA^1+A^2=180oˆB1+ˆB2=180oB^1+B^2=180o (kề bù)

Do đó ˆA1=ˆB1A^1=B^1.

Mặt khác, OA = OB, OC = OD

Suy ra OC – OA = OD – OB

Do đó AC = BD

Xét ∆EAC và ∆EBD có:

ˆA1=ˆB1A^1=B^1 (cmt);

AC = BD (cmt);

ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)

Do đó ∆EAC = ∆EBD (g.c.g).

c) Chứng minh: OE là tia phân giác của góc xOy.

Vì ∆EAC = ∆EBD (câu b)

Nên AE = BE (hai cạnh tương ứng).

Xét ∆OAE và ∆OBE có:

OA = OB (gt);

Cạnh OE chung;

AE = BE (cmt)

Do đó ∆OAE và ∆OBE (c.c.c)

Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)

Hay OE là phân giác của góc xOy.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 8 2019 lúc 16:50

bé thỏ cute
Xem chi tiết
bé thỏ cute
Xem chi tiết
Ngô Ngọc Tâm Anh
16 tháng 12 2021 lúc 13:08

Tự vẽ hình

Ta có:

AC=OA+OCAC=OA+OC

BD=OB+ODBD=OB+OD

mà AC=BDAC=BD (gt) , OA=OBOA=OB (gt)

⇒OC=OD⇒OC=OD

Xét △OAD△OAD và △OBC△OBC có

OA=OBOA=OB (gt)

ˆAOD=ˆBOCAOD^=BOC^ (đối đỉnh)

OD=OCOD=OC (cmt)

⇒△OAD=△OBC⇒△OAD=△OBC (c.g.c)

⇒AD=BC⇒AD=BC (hai cạnh tương ứng)

b)

Do △OAD=△OBC△OAD=△OBC (cmt)

⇒ˆODA=ˆOCB⇒ODA^=OCB^ (hai góc tương ứng)

và ˆOAD=ˆOBCOAD^=OBC^ (hai góc tương ứng)

Ta có:

ˆOAD+ˆCAE=1800OAD^+CAE^=1800

ˆOBC+ˆDBE=1800OBC^+DBE^=1800

mà ˆOAD=ˆOBCOAD^=OBC^ (cmt)

⇒ˆCAE=ˆDBE⇒CAE^=DBE^

Xét △EAC△EAC và △EBD△EBD có
ˆCAE=ˆDBECAE^=DBE^ (cmt)

AC=BDAC=BD (gt)

ˆACE=ˆEDBACE^=EDB^ (do ˆOCB=ˆODAOCB^=ODA^ -cmt)

⇒△EAC=△EBD⇒△EAC=△EBD (g.c.g)

c)

Xét △AOB△AOB có OA=OBOA=OB (gt)

⇒△AOB⇒△AOB cân tại OO

⇒ˆOBA=ˆOAB⇒OBA^=OAB^

Xét △COD△COD có OC=ODOC=OD (cmt)

⇒△COD⇒△COD cân tại OO

⇒ˆOCD=ˆODC⇒OCD^=ODC^

Ta có:

ˆAOB+ˆOBA+ˆOAB=1800AOB^+OBA^+OAB^=1800

ˆCOD+ˆOCD+ˆODC=1800COD^+OCD^+ODC^=1800

mà ˆOBA=ˆOABOBA^=OAB^(cmt), ˆOCD=ˆODCOCD^=ODC^ (cmt)

⇒ˆAOB+2ˆOBA=1800⇒AOB^+2OBA^=1800

ˆCOD+2ˆODC=1800COD^+2ODC^=1800

mà ˆAOB=ˆCODAOB^=COD^ (đối đỉnh)

⇒ˆOBA=ˆODC⇒OBA^=ODC^

mà chúng ở vị trí so le trong

⇒AB//CD

Lizy
Xem chi tiết

Xét ΔODB và ΔOCA có

\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)

\(\widehat{O}\) chung

Do đó: ΔODB đồng dạng với ΔOCA

=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)

=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)

Xét ΔODC và ΔOBA có

\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)

\(\widehat{O}\) chung

Do đó: ΔODC đồng dạng với ΔOBA

=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)

=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)

=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2019 lúc 5:41