Cho hình thang cân ABCD ( AB // CD ) Gọi O là giao điểm của AC và BD
a) C/m OA = OB; OC = OD
b) Gọi M;N là trung điểm AB và CD
C/m M; N; O thẳng hàng
Các bạn giúp mình với, cần gấp lắm .
Cho hình thang cân ABCD (AB//CD) . Gọi O là giao điểm của AC và BD . C/m rằng OC = OD , OA = OB
Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ODC}=\widehat{OCD}\)
hay OC=OD
Cho hình thang cân ABCD có AB//CD và AB<CD. Gọi O là giao điểm của AD và BC, E là giao điểm của AC và BD
a) Chứng minh ΔOAB cân tại O
b) Chứng minh ΔABD=ΔBAC
c) Chứng minh EC=ED
d) O, E và trung điểm của DC thẳng hàng
a: góc OAB=góc ODC
góc OBA=góc BCD
mà góc ODC=góc BCD
nên góc OAB=góc OBA
=>ΔOBA cân tại O
b: Xét ΔABD và ΔBAC có
BA chung
BD=AC
AD=BC
=>ΔABD=ΔBAC
c: ΔABD=ΔBAC
=>góc ABD=góc BAC
=>EA=EB
=>EC=ED
d: OA+AD=OD
OB+BC=OC
mà OA=OB và AD=BC
nên OD=OC
=>OE là trung trực của DC
=>O,E,trung điểm của DC thẳng hàng
a) Chứng minh ΔOAB cân tại O:
Vì AB//CD, ta có ∠ABO = ∠CDO (do là góc đồng quy của hai đường thẳng AB và CD).
Tương tự, vì AB//CD, ta có ∠BAO = ∠DCO (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔOAB có hai góc bằng nhau với ΔCDO, nên ΔOAB cân tại O.
b) Chứng minh ΔABD = ΔBAC:
Vì AB//CD, ta có ∠ABD = ∠BAC (do là góc đồng quy của hai đường thẳng AB và CD).
Tương tự, vì AB//CD, ta có ∠ADB = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔABD có hai góc bằng nhau với ΔBAC, nên ΔABD = ΔBAC.
c) Chứng minh EC = ED:
Vì AC là đường chéo của hình thang ABCD, nên AC chia BD thành hai đoạn bằng nhau.
Do đó, AE = CE và DE = BE.
Vì ΔAEB và ΔCEB có hai cạnh bằng nhau (AE = CE và BE = DE) và góc AEB = góc CEB (do AB//CD), nên ΔAEB = ΔCEB.
Từ đó, ta có EC = ED.
d) Chứng minh O, E và trung điểm của DC thẳng hàng:
Gọi F là trung điểm của DC. Ta cần chứng minh OF//AB.
Vì F là trung điểm của DC, nên DF = FC.
Vì AB//CD, ta có ∠FDC = ∠BAC (do là góc đồng quy của hai đường thẳng AD và BC).
Tương tự, vì AB//CD, ta có ∠FCD = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).
Do đó, ΔFDC có hai góc bằng nhau với ΔBAC, nên ΔFDC = ΔBAC.
Từ đó, ta có OF//AB.
Vậy, O, E và trung điểm của DC thẳng hàng.
Cho hình thang cân ABCD (AB//CD, AB<CD), O là giao điểm của AC và BD, I là giao điểm của AD và BC
a)Chứng minh OA=OB, OC=OD
b)Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh I, M, O, N thẳng hàng
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Cho hình thang ABCD (AB//CD), gọi O là giao điểm của hai đường chéo AC và BD
a) chứng minh tam giac OAB đồng dạng tam giác OCD
b) Tia phân giác của góc COD cắt CD tại E. Chứng minh EC/ED=OA/OB
a: XétΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
b: OE là phân giác của góc COD trong ΔCOD
nên EC/ED=OC/OD=OA/OB
cho hình thang cân ABCD(AB // CD) AB<CD.Gọi O là giao điểm của AC và BD, I là giao điểm của AD và BC chứng minh :
a) OA=OB, OD=OC
b )Gọi M,N lần lượt là trung điểm AB và CD .CM I, O, M ,N thẳng hàng
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 5:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Cho hình thang cân ABCD ( AB // CD, AB < CD ), O là giao điểm của hai đường chéo, I là giao điểm của AD và BC.
a, C/minh: OA = OB, OC = OD.
b, Gọi M, N lần lượt là trung điểm các cạnh AB; CD. CMR: I, M, O, N thẳng hàng.
Cho hình thang cân ABCD có AD // BC, AB = DC. gọi O là giao điểm 2 đường chéo AC và BD . C/m OA = OC OB = OD
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo ac và bd. Biết OA = OB. Cmr ABCD htc