Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Nhật Khang
Xem chi tiết
Rhider
26 tháng 11 2021 lúc 14:23

Tham khảo

nối đường chéo AC
Trong ∆ABC ta có
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ABC
EF//=1/2AC(1)
(Sd tính chất của đng trung bình)
Chứng minh tương tự với ∆ADC
=> HG//=1/2AC(2)
Từ (1) và(2) suy ra EF//=HG
Vậy tứ giác EFGHlaf hình bình hành
Vì có một cặp đối song song và bằng nhau

Nguyễn Thị Kim Anh
Xem chi tiết
๖Fly༉Donutღღ
3 tháng 9 2017 lúc 20:43

Tự vẽ hình :)

t/g ABC có :

AE = EB

BF = FC

\(\Rightarrow\)EF - đường trung bình của tam giác ABC

\(\Rightarrow\)\(EF\)//   \(AC\)\(,\)\(EF=\frac{AC}{2}\left(1\right)\)

t/g ADC có :

AH = HD

CG = GD

\(\Rightarrow\)HG - đường trung bình của tam giác ADC

\(\Rightarrow\)\(HG\)//   \(AC\)\(,\)\(HG=\frac{AC}{2}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Leftrightarrow\)EF // HG , EF = HG

Vì tứ giác EFGH có 2 cạnh đối song song và bằng nhau

\(\Rightarrow\)EFGH - hình bình hành ( đpcm )

๖Fly༉Donutღღ
3 tháng 9 2017 lúc 20:30

xem lại đề bài nhé bạn :)

๖Fly༉Donutღღ
3 tháng 9 2017 lúc 20:36

ghi cái đề bài cũng sai :v

phan nguyễn linh đan
Xem chi tiết
Cô Hoàng Huyền
23 tháng 8 2016 lúc 10:29

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

King Of Void
24 tháng 9 2017 lúc 16:42

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2019 lúc 12:04

Để học tốt Toán 8 | Giải toán lớp 8

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 5 2017 lúc 16:31

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối đường chéo AC.

Trong ∆ ABC ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của  ∆ ABC

⇒EF//AC và EF = 1/2 AC

(tính chất đường trung hình tam giác) (1)

Trong  ∆ ADC ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của ADC

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

H.Thịnh
Xem chi tiết
Nguyễn Ngọc Thiện Nhân
29 tháng 12 2022 lúc 10:32

E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = AC/2

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = AC/2.

+ Ta có:

EF //AC, HG//AC ⇒ EF // HG.

EF = AC/2; HG = AC/2 ⇒ EF = HG

⇒ tứ giác EFGH là hình bình hành.

Kiều Vũ Linh
29 tháng 12 2022 lúc 10:44

Em xem lại đề, em ghi sai đề rồi. Còn bạn Thiện Nhân giải ở dưới thì vẽ hình sai!

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
30 tháng 6 2017 lúc 8:42

Hình bình hành

Đạt Trần
2 tháng 8 2017 lúc 8:15

Hỏi đáp Toán- Vì ta nối DB thì sẽ có HE và GF là đường tb của tam giác ADB và DCB => GF//HE vì cùng // với DB và bằng 1/2 DB (1)
- Nối AC thì sẽ có HG và EF là đường tb của tam giác DCA và BAC => EF//HG vì cùng //AC và bằng 1/2 AC (2)
Từ (1) và (2) => tứ giác HEFG là HBH (có các cặp cạnh // và bằng nhau từng đôi một)

=>Hình đó là hình bình hành

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 1 2019 lúc 10:36

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tứ giác DEBF, ta có:

AB // CD (gt) hay DF // EB

EB = 1/2 AB (gt)

DF = 1/2 CD (gt)

Suy ra: EB = DF

Tứ giác DEBF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

giang đào phương
Xem chi tiết
Hn . never die !
28 tháng 6 2021 lúc 10:27

Trả lời :

+ E là trung điểm AB, F là trung điểm BC

⇒ EF là đường trung bình của tam giác ABC

⇒ EF // AC và EF = \(\frac{AC}{2}\)

+ H là trung điểm AD, G là trung điểm CD

⇒ HG là đường trung bình của tam giác ACD

⇒ HG // AC và HG = \(\frac{AC}{2}\).

+ Ta có:

EF // AC, HG//AC ⇒ EF // HG.

EF = \(\frac{AC}{2}\); HG = \(\frac{AC}{2}\) ⇒ EF = HG

⇒ Tứ giác EFGH là hình bình hành.

Khách vãng lai đã xóa
TRẦN BẢO NGHI
28 tháng 6 2021 lúc 10:31

ai biet

Khách vãng lai đã xóa
vương kiều linh
Xem chi tiết
nguyễn ngọc ánh
13 tháng 7 2017 lúc 22:20

sdfvbnm,.

Đào Trọng Chân
24 tháng 10 2017 lúc 18:32

À mà bạn tự vẽ hình nhé

Kẻ đường chéo AC(BD cũng được)

Xét tam giác ABC có: AE=EB:BF=CF

Do đó EF là đường trung bình của tam giác ABC

=>EF//AC:EF=1/2AC (1)

TTự: Xét tam giác ADC có: CG=DG:AH=DH

Do đó GH là đường trung bình của tam giác ADC

=>GH//AC:GH=1/2AC (2)

Từ (1) và (2) suy ra EF//GH:EF=GH

Vậy tứ giác EFGH là hình bình hành

Thấy đúng thì chia sẻ nha :D

Trần Minh Tú
2 tháng 12 2017 lúc 19:22

hình bình hành áp dụng tính chất đương trung bình nhá